• 제목/요약/키워드: Antimicrobial effects

검색결과 1,218건 처리시간 0.027초

Effect of topical ozonated sunflower oil on second intention wound healing in turtles: a randomised experimental study

  • Ginel, Pedro J.;Negrini, Joao;Guerra, Rafael;Lucena, Rosario;Ruiz-Campillo, Maria T.;Mozos, Elena
    • Journal of Veterinary Science
    • /
    • 제22권2호
    • /
    • pp.27.1-27.13
    • /
    • 2021
  • Background: Ozone is an antimicrobial agent that in experimental and case-control studies has been found to exert a positive effect on wound healing. Wild and pet chelonians frequently present insidious wounds exhibiting secondary infections and/or delayed healing. Objectives: Evaluate the effects of topical ozonated sunflower oil on second-intention healing of acute experimental skin wounds in red-eared sliders (Trachemys scripta elegans). Methods: Randomised within-subject controlled study; Group 1 (n = 24) was used to assess clinical healing features; Group 2 (n = 12) was used for histological evaluation in which two sets of wounds were biopsied at 2, 7, 14, 21, 28 and 42 days over the course of the cicatrisation process. A single 6 mm diameter wound was made on each rear limb and topical ozonated (950 peroxide value) and non-ozonated sunflower oil were applied daily for one week on treated and contralateral control wounds, respectively. Results: Mean wound size was significantly lower in the ozone-treated group at day 28 (p < 0.0001) with differences of clinical relevance (74.04% vs. 93.05% reduction of initial wound size). Histologically, the acute inflammatory reaction was enhanced in treated wounds, with significantly higher numbers of heterophils (p = 0.0016), lymphocytes (p < 0.001) and fibroblasts (p < 0.001). Conclusions: Daily topical application of ozonated sunflower oil over the course of one week improved the healing of acute, full-thickness skin wounds in chelonians. This clinical outcome was histologically correlated with an enhanced acute inflammatory reaction, as well as the production and remodelling of collagen fibres.

Aloe-Emodin-Mediated Photodynamic Therapy Attenuates Sepsis-Associated Toxins in Selected Gram-Positive Bacteria In Vitro

  • Otieno, Woodvine;Liu, Chengcheng;Ji, Yanhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권9호
    • /
    • pp.1200-1209
    • /
    • 2021
  • Sepsis is an acute inflammatory response that leads to life-threatening complications if not quickly and adequately treated. Cytolysin, hemolysin, and pneumolysin are toxins produced by gram-positive bacteria and are responsible for resistance to antimicrobial drugs, cause virulence and lead to sepsis. This work assessed the effects of aloe-emodin (AE) and photodynamic therapy (PDT) on sepsis-associated gram-positive bacterial toxins. Standard and antibiotic-resistant Enterococcus faecalis, Staphylococcus aureus, and Streptococcus pneumonia bacterial strains were cultured in the dark with varying AE concentrations and later irradiated with 72 J/cm-2 light. Colony and biofilm formation was determined. CCK-8, Griess reagent reaction, and ELISA assays were done on bacteria-infected RAW264.7 cells to determine the cell viability, NO, and IL-1β and IL-6 pro-inflammatory cytokines responses, respectively. Hemolysis and western blot assays were done to determine the effect of treatment on hemolysis activity and sepsis-associated toxins expressions. AE-mediated PDT reduced bacterial survival in a dose-dependent manner with 32 ㎍/ml of AE almost eliminating their survival. Cell proliferation, NO, IL-1β, and IL-6 cytokines production were also significantly downregulated. Further, the hemolytic activities and expressions of cytolysin, hemolysin, and pneumolysin were significantly reduced following AE-mediated PDT. In conclusion, combined use of AE and light (435 ± 10 nm) inactivates MRSA, S. aureus (ATCC 29213), S. pneumoniae (ATCC 49619), MDR-S. pneumoniae, E. faecalis (ATCC 29212), and VRE (ATCC 51299) in an AE-dose dependent manner. AE and light are also effective in reducing biofilm formations, suppressing pro-inflammatory cytokines, hemolytic activities, and inhibiting the expressions of toxins that cause sepsis.

Chemical compositions and biological activities of marine invertebrates from the East Sea of South Korea

  • Kim, Geun-Hyeong;Park, Hyeon-Ho;Chandika, Pathum;Ko, Seok-Chun;Jung, Kyung-Mi;Yoon, Sang Chul;Oh, Taeg-Yun;Kim, Young-Mog;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • 제22권6호
    • /
    • pp.13.1-13.9
    • /
    • 2019
  • Background: Marine invertebrates are well known as pivotal bioresources with bioactive substances such as anti-inflammatory sterols, antitumor terpenes, and antimicrobial peptides. However, there are few scientific reports on chemical compositions and bioactivities of marine invertebrates from the East Sea of South Korea. Methods: In this study, chemical compositions and biological activities were evaluated on both 70% EtOH and hot water extracts of 5 species of marine invertebrates (Crossaster papposus japonicus, Actinostola carlgreni, Stomphia coccinea, Actinostola sp., and Heliometra glacialis) collected from the East Sea of South Korea. The antioxidant activities were measured by ABTS radical scavenging assay. The cytotoxicity and anti-inflammatory activity were evaluated using MTT and Griess reagents. Moreover, the antibacterial effect was evaluated using paper disc assay and minimum inhibitory concentration (MIC) assay. Results: In the results of antioxidant activities, 70% EtOH extract of A. carlgreni showed the highest activity ($IC_{50}\;0.19{\pm}0.03mg/ml$) compared to other extracts. Moreover, 70% EtOH extract of A. carlgreni could significantly suppress the nitric oxide (NO) production in lipopolysaccharide-induced RAW 264.7. All extracts treated under $400{\mu}g/ml$ have no cytotoxic effects on RAW 264.7 macrophages. In the antibacterial test, both 70% EtOH extracts of C. papposus japonicus and H. glacialis showed a significant antibacterial effect on Staphylococcus aureus. The MIC values were evaluated at 256 and $512{\mu}g/ml$, respectively. Conclusions: These results suggested the bioactive potentials of marine invertebrates from the East Sea of South Korea in pharmaceutical and nutraceutical applications.

Toxicological Evaluation of Phytochemical Characterized Aqueous Extract of Wild Dried Lentinus squarrosulus (Mont.) Mushroom in Rats

  • Ugbogu, Eziuche Amadike;Akubugwo, Iroha Emmanuel;Ude, Victor Chibueze;Gilbert, James;Ekeanyanwu, Blessing
    • Toxicological Research
    • /
    • 제35권2호
    • /
    • pp.181-190
    • /
    • 2019
  • Lentinus squarrosulus (Mont.) is an edible wild mushroom with tough fruiting body that belongs to the family Polyporaceae. It is used in ethnomedicine for the treatment of ulcer, anaemia, cough and fever. Recent studies have demonstrated its anticancer, anti-diabetic and antioxidant properties. However, little or no information is available regarding the bioactive components and toxicological study of wild dried L. squarrosulus. Therefore, this study investigated the bioactive components of aqueous extract of boiled wild dried L. squarrosulus and its toxicological effects in rats. The extract of L. squarrosulus was subjected to GC-MS analysis. The acute toxicity test was performed by oral administration of a single dose of up to 5,000 mg/kg extract of L. squarrosulus. In subacute study, the rats were orally administered extract of L. squarrosulus at the doses of 500, 1,000 and 1,500 mg/kg body weight daily for 14 days. The haematological, lipid profile, liver and kidney function parameters were determined and the histopathology of the liver and kidney were examined. The GC-MS analysis revealed the presence of bioactive compounds; 1-tetradecene, fumaric acid, monochloride, 6-ethyloct-3-yl ester, 9-eicosene, phytol, octahydropyrrolo[1,2-a]pyrazine and 3-trifluoroacetoxypentadecane. In acute toxicity study, neither death nor toxicity sign was recorded. In the sub-acute toxicity study, significant differences (p < 0.05) were observed on creatinine, aspartate aminotransferase, alanine aminotransferase, total cholesterol, triglycerides and high-density lipoprotein cholesterol. Whilst no significant differences (p > 0.05) were observed on packed cell volume, heamoglobin, red blood cell, white blood cell and alkaline phosphatase, in all the tested doses. No histopathological alterations were recorded. Our findings revealed that aqueous extract of L. squarrosulus may have antimicrobial, antinocieptive and antioxidant properties based on the result of GC-MS analysis. Results of the toxicity test showed no deleterious effect at the tested doses, suggesting that L. squarrosulus is safe for consumption at the tested doses.

Unique epithelial expression of S100A calcium binding protein A7A in the endometrium at conceptus implantation in pigs

  • Lee, Soohyung;Jang, Hwanhee;Yoo, Inkyu;Han, Jisoo;Jung, Wonchul;Ka, Hakhyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1355-1362
    • /
    • 2019
  • Objective: S100A7A, a member of the S100 protein family, is involved in various biological processes, including innate immunity, antimicrobial function, and epithelial tumorigenesis. However, the expression and function of S100A7A in the endometrium during the estrous cycle and pregnancy are not well understood in pigs. Therefore, this study determined the expression and regulation of S100A7A at the maternal-conceptus interface in pigs. Methods: We obtained endometrial tissues from pigs throughout the estrous cycle and pregnancy, conceptus tissues during early pregnancy, and chorioallantoic tissues during midto late pregnancy and analyzed the expression of S100A7A in these tissues. We also determined the effects of steroid hormones, estradiol-$17{\beta}$ ($E_2$) and progesterone, and interleukin-$1{\beta}$ (IL1B) on S100A7A expression in endometrial tissues. Results: We found that S100A7A was expressed in the endometrium during the estrous cycle and pregnancy in a pregnancy status- and stage-dependent manner and was localized to endometrial luminal epithelial (LE) and superficial glandular epithelial cells with strong intensity in LE cells on day 12 of pregnancy. Early stage conceptuses and chorioallantoic tissues from day 30 to term pregnancy also expressed S100A7A. The expression of S100A7A was increased by $E_2$ and IL1B in endometrial tissues. Conclusion: S100A7A was expressed at the maternal-conceptus interface at the initiation of implantation in response to conceptus-derived estrogen and IL1B and could be a unique endometrial epithelial marker for conceptus implantation in pigs. These findings provide an important insight into the understanding of conceptus-endometrial interactions for the successful establishment of pregnancy in pigs.

수증기 증류 추출법에 의해 얻어진 미국산 길초근 정유의 살비효과 및 항균효과 (Acaricidal and antibacterial toxicities of Valeriana officinalis oils obtained by steam distillation extraction)

  • 최선아;이회선
    • Journal of Applied Biological Chemistry
    • /
    • 제62권1호
    • /
    • pp.19-23
    • /
    • 2019
  • 수증기증류 추출법에 의한 미국산 길초근(Valeriana officinalis)의 구성성분을 알아보기 위해 GC-MS 분석을 수행한 결과, 주요 성분이 patchouli alcohol (18.69%) 및 ${\beta}$-gurjunene (15.26%)인 것으로 나타났다. 그리고 길초근 정유의 살비활성 및 항균활성을 알아보기 위해 작은소피참진드기 및 긴털가루응애에 대하여 접촉독성법을 실시하였고, 식중독균 8 종에 대하여 agar disc diffusion법을 실시하였다. 그 결과, 긴털가루응애 성충에 대하여 $28.01{\mu}g/cm^2$$LD_{50}$값을 나타내었으며, 작은소피참진드기 유충 및 약충에 대하여 각각 178.26 및 $207.98{\mu}g/cm^2$$LD_{50}$ 값을 나타내었다. 또한 식중독균은 8종 균주에 대하여 항균활성을 나타내었으며, 특히 L.monocytogenes에 대하여 우수한 항균활성을 나타내었다. 따라서 본 연구를 통해 수증기증류 추출법에 의한 길초근 정유가 살비제 및 항생제로서의 가치가 있음을 확인하였다.

Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180

  • Kwon, Yoo Jin;Chun, Byung Hee;Jung, Hye Su;Chu, Jaeryang;Joung, Hyunchae;Park, Sung Yurb;Kim, Byoung Kook;Jeon, Che Ok
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권10호
    • /
    • pp.1420-1429
    • /
    • 2021
  • The safety of the probiotic strain Q180, which exerts postprandial lipid-lowering effects, was bioinformatically and phenotypically evaluated. The genome of strain Q180 was completely sequenced, and single circular chromosome of 3,197,263 bp without any plasmid was generated. Phylogenetic and related analyses using16S rRNA gene and whole-genome sequences revealed that strain Q180 is a member of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum. Antimicrobial resistance (AMR) genes were bioinformatically analyzed using all Lp. plantarum genomes available in GenBank, which showed that AMR genes are present differently depending on Lp. plantarum strains. Bioinformatic analysis demonstrated that some mobile genetic elements such as prophages and insertion sequences were identified in the genome of strain Q180, but because they did not contain harmful genes such as AMR genes and virulence factor (VF)- and toxin-related genes, it was suggested that there is no transferability of harmful genes. The minimum inhibition concentrations of seven tested antibiotics suggested by the European Food Safety Authority guidelines were slightly lower than or equal to the microbiological cut-off values for Lp. plantarum. Strain Q180 did not show hemolytic and gelatinase activities and biogenic amine-producing ability. Taken together, this study demonstrated the safety of strain Q180 in terms of absence of AMR genes and VF- and toxin-related genes as a probiotic strain.

Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR

  • Shi, Chenxi;Li, Minmin;Muhammad, Ishfaq;Ma, Xin;Chang, Yicong;Li, Rui;Li, Changwen;He, Jingshan;Liu, Fangping
    • Journal of Veterinary Science
    • /
    • 제19권6호
    • /
    • pp.808-816
    • /
    • 2018
  • Bacterial biofilms have been demonstrated to be closely related to clinical infections and contribute to drug resistance. Berberine, which is the main component of Coptis chinensis, has been reported to have efficient antibacterial activity. This study aimed to investigate the potential effect of a combination of berberine with ciprofloxacin (CIP) to inhibit Salmonella biofilm formation and its effect on expressions of related genes (rpoE, luxS, and ompR). The fractional inhibitory concentration (FIC) index of the combination of berberine with CIP is 0.75 showing a synergistic antibacterial effect. The biofilm's adhesion rate and growth curve showed that the multi-resistant Salmonella strain had the potential to form a biofilm relative to that of strain CVCC528, and the antibiofilm effects were in a dose-dependent manner. Biofilm microstructures were rarely observed at $1/2{\times}MIC/FIC$ concentrations (MIC, minimal inhibition concentration), and the combination had a stronger antibiofilm effect than each of the antimicrobial agents used alone at $1/4{\times}FIC$ concentration. LuxS, rpoE, and ompR mRNA expressions were significantly repressed (p< 0.01) at $1/2{\times}MIC/FIC$ concentrations, and the berberine and CIP combination repressed mRNA expressions more strongly at the $1/4{\times}FIC$ concentration. The results indicate that the combination of berberine and CIP has a synergistic effect and is effective in inhibiting Salmonella biofilm formation via repression of luxS, rpoE, and ompR mRNA expressions.

Prevalence and Genetic Characterization of mcr-1-Positive Escherichia coli Isolated from Retail Meats in South Korea

  • Kim, Seokhwan;Kim, Hansol;Kang, Hai-Seong;Kim, Yonghoon;Kim, Migyeong;Kwak, Hyosun;Ryu, Sangryeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권12호
    • /
    • pp.1862-1869
    • /
    • 2020
  • The spread of plasmid-mediated colistin resistance has posed a serious threat to public health owing to its effects on the emergence of pandrug-resistant bacteria. In this study, we investigated the prevalence and characteristics of mcr-1-positive Escherichia coli isolated from retail meat samples in Korea. In total, 1,205 E. coli strains were isolated from 3,234 retail meat samples in Korea. All E. coli strains were subjected to antimicrobial susceptibility testing and were examined for the presence of mcr-1 gene. All mcr-1-positive E. coli (n = 10, 0.8%) from retail meat were subjected to pulse-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS). The transferability of mcr-1 gene was determined by conjugation assays. The mcr-1-positive strains exhibited diverse clonal types. Our mcr-1 genes were located in plasmids belonged to the IncI2 (n = 1) and IncX4 (n = 8) types, which were reported to be prevalent in Asia and worldwide, respectively. Most mcr-1 genes from mcr-1-positive strains (9/10) were transferable to the recipient strain and the transfer frequencies ranged from 2.4 × 10-3 to 9.8 × 10-6. Our data suggest that the specific types of plasmid may play an important role in spreading plasmid-mediated colistin resistance in Korea. Furthermore, our findings suggest that the retail meat may be an important tool for disseminating plasmid-mediated colistin resistance.

The Water-Soluble Chitosan Derivative, N-Methylene Phosphonic Chitosan, Is an Effective Fungicide against the Phytopathogen Fusarium eumartii

  • Mesas, Florencia Anabel;Terrile, Maria Cecilia;Silveyra, Maria Ximena;Zuniga, Adriana;Rodriguez, Maria Susana;Casalongue, Claudia Anahi;Mendieta, Julieta Renee
    • The Plant Pathology Journal
    • /
    • 제37권6호
    • /
    • pp.533-542
    • /
    • 2021
  • Chitosan has been considered an environmental-friendly polymer. However, its use in agriculture has not been extended yet due to its relatively low solubility in water. N-Methylene phosphonic chitosan (NMPC) is a water-soluble derivative prepared by adding a phosphonic group to chitosan. This study demonstrates that NMPC has a fungicidal effect on the phytopathogenic fungus Fusarium solani f. sp. eumartii (F. eumartii) judged by the inhibition of F. eumartti mycelial growth and spore germination. NMPC affected fungal membrane permeability, reactive oxygen species production, and cell death. Also, this chitosan-derivative exerted antifungal effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. NMPC did not affect tomato cell viability at the same doses applied to these phytopathogens to exert fungicide action. In addition to water solubility, the selective biological cytotoxicity of NMPC adds value in its application as an antimicrobial agent in agriculture.