Browse > Article
http://dx.doi.org/10.4014/jmb.2106.06066

Safety Assessment of Lactiplantibacillus (formerly Lactobacillus) plantarum Q180  

Kwon, Yoo Jin (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Chun, Byung Hee (Department of Life Science, Chung-Ang University)
Jung, Hye Su (Department of Life Science, Chung-Ang University)
Chu, Jaeryang (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Joung, Hyunchae (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Park, Sung Yurb (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Kim, Byoung Kook (Probiotics Research Laboratory, Chong Kun Dang Bio Research Institute (CKDBIO))
Jeon, Che Ok (Department of Life Science, Chung-Ang University)
Publication Information
Journal of Microbiology and Biotechnology / v.31, no.10, 2021 , pp. 1420-1429 More about this Journal
Abstract
The safety of the probiotic strain Q180, which exerts postprandial lipid-lowering effects, was bioinformatically and phenotypically evaluated. The genome of strain Q180 was completely sequenced, and single circular chromosome of 3,197,263 bp without any plasmid was generated. Phylogenetic and related analyses using16S rRNA gene and whole-genome sequences revealed that strain Q180 is a member of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum. Antimicrobial resistance (AMR) genes were bioinformatically analyzed using all Lp. plantarum genomes available in GenBank, which showed that AMR genes are present differently depending on Lp. plantarum strains. Bioinformatic analysis demonstrated that some mobile genetic elements such as prophages and insertion sequences were identified in the genome of strain Q180, but because they did not contain harmful genes such as AMR genes and virulence factor (VF)- and toxin-related genes, it was suggested that there is no transferability of harmful genes. The minimum inhibition concentrations of seven tested antibiotics suggested by the European Food Safety Authority guidelines were slightly lower than or equal to the microbiological cut-off values for Lp. plantarum. Strain Q180 did not show hemolytic and gelatinase activities and biogenic amine-producing ability. Taken together, this study demonstrated the safety of strain Q180 in terms of absence of AMR genes and VF- and toxin-related genes as a probiotic strain.
Keywords
Lactiplantibacillus plantarum Q180; safety; antibiotic resistance; virulence factor; probiotics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li J, Ren F, Gu H, Li X, Gan B. 2011. Safety evaluation in vitro of Enterococcus durans from Tibetan traditional fermented yak milk. J. Microbiol. 49: 721-728.   DOI
2 Lee DY, Seo Y-S, Rayamajhi N, Kang ML, Lee SI, Yoo HS. 2009. Isolation, characterization, and evaluation of wild isolates of Lactobacillus reuteri from pig feces. J. Microbiol. 47: 663-672.   DOI
3 Park YE, Kim MS, Shim KW, Kim Y-I, Chu J, Kim B-K, et al. 2020. Effects of Lactobacillus plantarum Q180 on postprandial lipid levels and intestinal environment: A double-blind, randomized, placebo-controlled, parallel trial. Nutrients 12: 255.   DOI
4 Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858.   DOI
5 De Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028.   DOI
6 Pique N, Berlanga M, Minana-Galbis D. 2019. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 20: 2534.   DOI
7 Liu Y-W, Liong M-T, Tsai Y-C. 2018. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J. Microbiol. 56: 601-613.   DOI
8 Mukerji P, Roper JM, Stahl B, Smith AB, Burns F, Rae JC, et al. 2016. Safety evaluation of AB-LIFE®(Lactobacillus plantarum CECT 7527, 7528 and 7529): Antibiotic resistance and 90-day repeated-dose study in rats. Food Chem. Toxicol. 92: 117-128.   DOI
9 Gueimonde M, Sanchez B, de Los Reyes-Gavilan CG, Margolles A. 2013. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 4: 202.   DOI
10 Priyanka V, Ramesha A, Gayathri D, Vasudha M. 2020. Molecular characterization of non-biogenic amines producing Lactobacillus plantarum GP11 isolated from traditional pickles using HRESI-MS analysis. J. Food Sci. Technol. 58: 2216-2226.
11 Devirgiliis C, Zinno P, Perozzi G. 2013. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol. 4: 301.   DOI
12 Zoletti GO, Pereira EM, Schuenck RP, Teixeira LM, Siqueira Jr JF, dos Santos KRN. 2011. Characterization of virulence factors and clonal diversity of Enterococcus faecalis isolates from treated dental root canals. Res. Microbiol. 162: 151-158.   DOI
13 Wojcik W, Lukasiewicz M, Puppel K. 2021. Biogenic amines: formation, action and toxicity-a review. J. Sci. Food Agric. 101: 2634-2640.   DOI
14 Goel A, Halami PM, Tamang JP. 2020. Genome analysis of Lactobacillus plantarum isolated from some Indian fermented foods for bacteriocin production and probiotic marker genes. Front. Microbiol. 11: 40.   DOI
15 Clinical and laboratory standards institute. 2012. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard CLSI document M07-A9. Wayne, PA, USA.
16 Florez AB, Egervarn M, Danielsen M, Tosi L, Morelli L, Lindgren S, et al. 2006. Susceptibility of Lactobacillus plantarum strains to six antibiotics and definition of new susceptibility-resistance cutoff values. Microb. Drug Resist. 12: 252-256.   DOI
17 Kenfack CHM, Ngoufack FZ, Kaktcham PM, Wang YR, Zhu T, Yin L. 2018. Safety and antioxidant properties of five probiotic Lactobacillus plantarum strains isolated from the digestive tract of honey bees. Am. J. Microbiol. Res. 6: 1-8.   DOI
18 Kim S, Huang E, Park S, Holzapfel W, Lim S-D. 2018. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum K10. Korean J. Food Sci. Anim. Resour. 38: 554-569.   DOI
19 Gao Y, Liu Y, Sun M, Zhang H, Mu G, Tuo Y. 2020. Physiological function analysis of Lactobacillus plantarum Y44 based on genotypic and phenotypic characteristics. J. Dairy Sci. 103: 5916-5930.   DOI
20 Gotteland M, Cires MJ, Carvallo C, Vega N, Ramirez MA, Morales P, et al. 2014. Probiotic screening and safety evaluation of Lactobacillus strains from plants, artisanal goat cheese, human stools, and breast milk. J. Med. Food 17: 487-495.   DOI
21 Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, et al. 2019. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Appl. Environ. Microbiol. 85: e01738-18
22 Chokesajjawatee N, Santiyanont P, Chantarasakha K, Kocharin K, Thammarongtham C, Lertampaiporn S, et al. 2020. Safety assessment of a nham starter culture Lactobacillus plantarum BCC9546 via whole-genome analysis. Sci. Rep. 10: 10241.   DOI
23 Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
24 Meier-Kolthoff JP, Auch AF, Klenk H-P, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.   DOI
25 Hummel AS, Hertel C, Holzapfel WH, Franz CM. 2007. Antibiotic resistances of starter and probiotic strains of lactic acid bacteria. Appl. Environ. Microbiol. 73: 730-739.   DOI
26 Kim KH, Lee SH, Chun BH, Jeong SE, Jeon CO. 2019. Tetragenococcus halophilus MJ4 as a starter culture for repressing biogenic amine (cadaverine) formation during saeu-jeot (salted shrimp) fermentation. Food Microbiol. 82: 465-473.   DOI
27 Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol. 68: 461-466.   DOI
28 Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12: 59-60.   DOI
29 Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500.   DOI
30 Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34: 32-36.   DOI
31 Cebeci A, Gurakan C. 2003. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20: 511-518.   DOI
32 Zhang F, Gao J, Wang B, Huo D, Wang Z, Zhang J, et al. 2018. Whole-genome sequencing reveals the mechanisms for evolution of streptomycin resistance in Lactobacillus plantarum. J. Dairy Sci. 101: 2867-2874.   DOI
33 Domig KJ, Zycka-Krzesinska J, Bardowski J, Morelli L. 2008. Molecular assessment of erythromycin and tetracycline resistance genes in lactic acid bacteria and bifidobacteria and their relation to the phenotypic resistance. Int. J. Probiotics Prebiotics 3: 271-280.
34 Mayrhofer S, Van Hoek AH, Mair C, Huys G, Aarts HJ, Kneifel W, et al. 2010. Antibiotic susceptibility of members of the Lactobacillus acidophilus group using broth microdilution and molecular identification of their resistance determinants. Int. J. Food Microbiol. 144: 81-87.   DOI
35 Lahtinen SJ, Boyle RJ, Margolles A, Frias R, Gueimonde M. 2009. Safety assessment of probiotics. Prebiotics probiotics Sci. Technol. Springer-Verlag press, Berlin.
36 Huycke MM, Spiegel CA, Gilmore MS. 1991. Bacteremia caused by hemolytic, high-level gentamicin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1626-1634.   DOI
37 Sharma P, Tomar SK, Goswami P, Sangwan V, Singh R. 2014. Antibiotic resistance among commercially available probiotics. Food Res. Int. 57: 176-195.   DOI
38 Abouloifa H, Rokni Y, Bellaouchi R, Ghabbour N, Karboune S, Brasca M, et al. 2019. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives. Probiotics Antimicrob. Proteins 12: 683-696.   DOI
39 Klarin B, Larsson A, Molin G, Jeppsson B. 2019. Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD-type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. Microbiologyopen 8: e00642.   DOI
40 Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat. Biotechnol. 33: 623-630.   DOI
41 Bruckner H, Flassig S, Kirschbaum J. 2012. Determination of biogenic amines in infusions of tea (Camellia sinensis) by HPLC after derivatization with 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl). Amino Acids 42: 877-885.   DOI
42 Zhang M, Jiang Y, Cai M, Yang Z. 2020. Characterization and ACE inhibitory activity of fermented milk with probiotic Lactobacillus plantarum K25 as analyzed by GC-MS-based metabolomics approach. J. Microbiol. Biotechnol. 30: 903-911.   DOI
43 Olek A, Woynarowski M, Ahren IL, Kierkus J, Socha P, Larsson N, et al. 2017. Efficacy and safety of Lactobacillus plantarum DSM 9843 (LP299V) in the prevention of antibiotic-associated gastrointestinal symptoms in children-randomized, double-blind, placebo-controlled study. J. Pediatr. 186: 82-86.   DOI
44 Park DM, Bae J-H, Kim MS, Kim H, Kang SD, Shim S, et al. 2019. Suitability of Lactobacillus plantarum SPC-SNU 72-2 as a probiotic starter for sourdough fermentation. J. Microbiol. Biotechnol. 29: 1729-1738.   DOI
45 Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37: 141-145.
46 Shao Y, Zhang W, Guo H, Pan L, Zhang H, Sun T. 2015. Comparative studies on antibiotic resistance in Lactobacillus casei and Lactobacillus plantarum. Food Control 50: 250-258.   DOI
47 Park S-Y, Cho S-A, Kim S-H, Lim S-D. 2014. Physiological characteristics and anti-obesity effect of Lactobacillus plantarum Q180 isolated from feces. Korean J. Food Sci. Anim. Resour. 34: 647-655.   DOI
48 Kwon J, Kim B, Lee C, Joung H, Kim B-K, Choi IS, et al. 2020. Comprehensive amelioration of high-fat diet-induced metabolic dysfunctions through activation of the PGC-1α pathway by probiotics treatment in mice. PLoS One 15: e0228932.   DOI
49 Baek JH, Kim KH, Moon JY, Yeo S-H, Jeon CO. 2020. Acetobacter oryzoeni sp. nov., isolated from Korean rice wine vinegar. Int. J. Syst. Evol. Microbiol. 70: 2026-2033.   DOI
50 Binetti AG, Del Rio B, Martin MC, Alvarez MA. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl. Environ. Microbiol. 71: 6096-6103.   DOI
51 Facklam RR, Carvalho MdGS, Teixeira LM. 2002. History, taxonomy, biochemical characteristics, and antibiotic susceptibility testing of enterococci. The enterococci: pathogenesis, molecular biology, and antibiotic resistance. ASM press, Washington, D.C., USA.
52 Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, et al. 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 58: 212-220.   DOI
53 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9: e112963.   DOI
54 Abriouel H, Munoz MdCC, Lerma LL, Montoro BP, Bockelmann W, Pichner R, et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 78: 465-481.   DOI
55 Lee I, Kim YO, Park S-C, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103.   DOI
56 Grant JR, Stothard P. 2008. The CGView Server: a comparative genomics tool for circular genomes. Nucleic Acids Res. 36: 181-184.
57 Huerta-Cepas J, Szklarczyk D, Heller D, Hernandez-Plaza A, Forslund SK, Cook H, et al. 2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47: 309-314.
58 Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. 2005. VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res. 33: 325-328.   DOI
59 Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, et al. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44: 16-21.
60 Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: 517-525.   DOI
61 Na S-I, Kim YO, Yoon S-H, Ha S-m, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 56: 280-285.   DOI
62 Additives EPo, Feed PoSuiA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740.
63 Mercanti DJ, Carminati D, Reinheimer JA, Quiberoni A. 2011. Widely distributed lysogeny in probiotic lactobacilli represents a potentially high risk for the fermentative dairy industry. Int. J. Food Microbiol. 144: 503-510.   DOI
64 Beecher DJ, Schoeni JL, Wong A. 1995. Enterotoxic activity of hemolysin BL from Bacillus cereus. Infect. Immun. 63: 4423-4428.   DOI