Browse > Article
http://dx.doi.org/10.1186/s41240-019-0127-2

Chemical compositions and biological activities of marine invertebrates from the East Sea of South Korea  

Kim, Geun-Hyeong (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
Park, Hyeon-Ho (Innovation Research Team, Coreana Cosmetics Co)
Chandika, Pathum (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
Ko, Seok-Chun (Team of Marine Bio-resources, National Marine Biodiversity Institute of Korea)
Jung, Kyung-Mi (Dokdo Fisheries Research Center, National Institute of Fisheries Science)
Yoon, Sang Chul (Marine and Fisheries Bio-resources Division, Ministry of Oceans and Fisheries)
Oh, Taeg-Yun (Fisheries Resources Management Division, National Institute of Fisheries Science)
Kim, Young-Mog (Marine-Integrated Bionics Research Center, Pukyong National University)
Jung, Won-Kyo (Department of Biomedical Engineering, and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.22, no.6, 2019 , pp. 13.1-13.9 More about this Journal
Abstract
Background: Marine invertebrates are well known as pivotal bioresources with bioactive substances such as anti-inflammatory sterols, antitumor terpenes, and antimicrobial peptides. However, there are few scientific reports on chemical compositions and bioactivities of marine invertebrates from the East Sea of South Korea. Methods: In this study, chemical compositions and biological activities were evaluated on both 70% EtOH and hot water extracts of 5 species of marine invertebrates (Crossaster papposus japonicus, Actinostola carlgreni, Stomphia coccinea, Actinostola sp., and Heliometra glacialis) collected from the East Sea of South Korea. The antioxidant activities were measured by ABTS radical scavenging assay. The cytotoxicity and anti-inflammatory activity were evaluated using MTT and Griess reagents. Moreover, the antibacterial effect was evaluated using paper disc assay and minimum inhibitory concentration (MIC) assay. Results: In the results of antioxidant activities, 70% EtOH extract of A. carlgreni showed the highest activity ($IC_{50}\;0.19{\pm}0.03mg/ml$) compared to other extracts. Moreover, 70% EtOH extract of A. carlgreni could significantly suppress the nitric oxide (NO) production in lipopolysaccharide-induced RAW 264.7. All extracts treated under $400{\mu}g/ml$ have no cytotoxic effects on RAW 264.7 macrophages. In the antibacterial test, both 70% EtOH extracts of C. papposus japonicus and H. glacialis showed a significant antibacterial effect on Staphylococcus aureus. The MIC values were evaluated at 256 and $512{\mu}g/ml$, respectively. Conclusions: These results suggested the bioactive potentials of marine invertebrates from the East Sea of South Korea in pharmaceutical and nutraceutical applications.
Keywords
East Sea of South Korea; Marine invertebrates; Antioxidant; Anti-inflammatory; Antibacterial;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Qian ZJ, Kim SA, Lee JS, Kim HJ, Choi IW, Jung WK. The antioxidant and anti-inflammatory effects of abalone intestine digest, Haliotis discus hannai in RAW 264.7 macrophages. Biotechnol Bioprocess Eng. 2012;17:475-84.   DOI
2 Rho TK, Lee T, An S. Dissolved Oxygen and Nutrients. Oceanography of the East Sea (Japan Sea); 2016. p. 149-168.
3 Rongjun H, Yuejun Z, Ruina Z, Peilong S. Antioxidant and antitumor activites in vitro of polysaccharides from E. sipunculoides. Int J BiolMacromol. 2015;78:56-61.   DOI
4 Ryu SH, Jang KH, Choi EH, Kim SK, Song SJ, Cho HJ, Ryu JS, Kim YM, Sagong J, Lee HJ, Yeo MY, Bahn SY, Kim HM, Lee GS, Lee DH, Choo YS, Park JH, Park JS, Ryu JS, Khim JS, Hwang UW. Biodiversity of marine invertebrates on rocky shores of Dokdo, Korea. Zool Stud. 2012;51(5):710-26.
5 Sanders KM, Word SM. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am J Physiol Gastrointest Liver Physiol. 1992;262(3):G379-92.   DOI
6 Senthilkumar K, Kim SK. Marine invertebrate natural products for anti-inflammatory and chronic diseases. Evid Based Complement Alternat Med. 2013;2013:572859.
7 Silva TC, De Andrade PB, Paiva-Martins F, Valentao P, Pereira DM. In vitro anti-inflammatory and cytotoxic effects of aqueous extracts from the edible sea anemones anemonia sulcata and actinia equine. Int J Mol Sci. 2017;18:653.   DOI
8 Singleton VL, Orthofer R, Lamuela-Raventos RM. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999;299:152-78.   DOI
9 Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal. 2006;19:669-75.   DOI
10 Wijesinghe WAJP, Jeon YJ. Biological activities and potential cosmeceutical applications of bioactive components from brown seaweeds: a review. Phytochem Rev. 2011;10(3):431-43.   DOI
11 Yoon SH, Chough SK. Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan). Geol Soc Am Bull. 1995;107:83-97.   DOI
12 Yun JY, Magaard L, Kim K, Shin CW, Kim C, Byun SK. Spatial and temporal variability of the North Korean Cold Water leading to the near-bottom cold water intrusion in Korea Strait. Prog Oceanogr. 2004;60:99-131.   DOI
13 Daletos G, Ancheeva E, Chaidir C, Kalscheuer R, Proksch P. Antimycobacterial metabolites from marine invertebrates. Archiv der Pharmazie. 2016;349:763-73.   DOI
14 Amini E, Nabiuni M, Baharara J, Parivar K, Amini E. Metastatic inhibitory and radical scavenging efficacies of saponins extracted from the brittle star (Ophiocoma erinaceus). Asian Pac J Cancer Prev. 2015;16:4751-8.   DOI
15 Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci. 1990;87(4):1620-4.   DOI
16 Chandika P, Ko SC, Jung WK. Marine-derived biological macromolecule-based biomaterials for wound healing and skin tissue regeneration. Int J Biol Macromol. 2015;77:24-35.   DOI
17 Danovaro R, Corinaldsi C, Dell'Anno A, Snelgrove PVR. The deep-sea under global change. Curr Biol. 2017;27(11):R461-5.   DOI
18 Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6.   DOI
19 Gomes NGM, Dasari R, Chandra S, Kiss R, Kornienko A. Marine invertebrate metabolites with anticancer activities: solutions to the "supply problem". Mar Drugs. 2016;14:98.   DOI
20 Fernando IP, Shanura NJW, JEON YJ. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol. 2016;48:22-30.   DOI
21 Ko SC, Jang JY, Ye BR, Kim MS, Choi IW, Park WS, Heo SJ, Jung WK. Purification and molecular docking study of angiotensin I-converting enzyme (ACE) inhibitory peptides from hydrolysates of marine sponge Stylotella aurantium. Process Biochem. 2017;54:180-7.   DOI
22 Lee CC, Hsieh HJ, Hsieh CH, Hwang DF. Antioxidative and anticancer activities of various ethanolic extract fractions from crown-of-thorns starfish (Acanthaster planci). Environ Toxicol Pharmacol. 2014a;38:761-73.   DOI
23 Lee DS, Eom SH, Kim YM, Kim HS, Yim MJ, Lee SH, Kim DH, Je JY. Antibacterial and synergic effects of gallic acid-grafted-chitosan with -lactams against methicillin-resistant Staphylococcus aureus (MRSA). Can J Microbiol. 2014b;60:629-38.   DOI
24 Najafian L, Babji AS. A review of fish-derived antioxidant and antimicrobial peptides: their production, assessment, and applications. Peptides. 2012;33(1):178-85.   DOI
25 Natarajan K, Sathish R, Regupathi T, Riyaz A. Antibacterial activity of crude extracts of marine invertebrate Polyclinum madrasensis Sebastian. Indian J Sci Technol. 2010;3(3):303-4.   DOI
26 Oh GW, Ko SC, Lee DH, Heo SJ, Jung WK. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): a review. Fish Aquat Sci. 2017;20:28.   DOI