• 제목/요약/키워드: Antifungal substances

검색결과 130건 처리시간 0.035초

Biocontrol Activity of Bacillus amyloliquefaciens CNU114001 against Fungal Plant Diseases

  • Ji, Seung Hyun;Paul, Narayan Chandra;Deng, Jian Xin;Kim, Young Sook;Yun, Bong-Sik;Yu, Seung Hun
    • Mycobiology
    • /
    • 제41권4호
    • /
    • pp.234-242
    • /
    • 2013
  • A total of 62 bacterial isolates were obtained from Gomsohang mud flat, Mohang mud flat, and Jeju Island, Republic of Korea. Among them, the isolate CNU114001 showed significant antagonistic activity against pathogenic fungi by dual culture method. The isolate CNU114001 was identified as Bacillus amyloliquefaciens by morphological observation and molecular data analysis, including 16SrDNA and gyraseA (gyrA) gene sequences. Antifungal substances of the isolate were extracted and purified by silica gel column chromatography, thin layer chromatography, and high performance liquid chromatography. The heat and UV ray stable compound was identified as iturin, a lipopeptide (LP). The isolate CNU114001 showed broad spectrum activity against 12 phytopathogenic fungi by dual culture method. The semi purified compound significantly inhibits the mycelial growth of pathogenic fungi (Alternaria panax, Botrytis cinera, Colletotrichum orbiculare, Penicillium digitatum, Pyricularia grisea and Sclerotinia sclerotiorum) at 200 ppm concentration. Spore germ tube elongation of Botrytis cinerea was inhibited by culture filtrate of the isolate. Crude antifungal substance showed antagonistic activity against cucumber scleotiorum rot in laboratory, and showed antagonistic activity against tomato gray mold, cucumber, and pumpkin powdery mildew in greenhouse condition.

토양병원균(土壤病原菌) 길항성(拮抗性) Streptomyces sp. A-2 활성물질(活性物質)의 특성(特性)에 관한 연구(硏究) (Studies on Characterization of Active Substances from Antagonistic Streptomyces sp. A-2 Strain against Soil-borne Phytopathogen)

  • 박경수;류진창
    • 한국토양비료학회지
    • /
    • 제25권4호
    • /
    • pp.401-406
    • /
    • 1992
  • 우리나라 28개 지역(地域) 논밭 토양에서 수집한 시료에서 방선균(放線菌) 108주를 분리하고, 고추역병균, 참깨역병균 및 채소입고병균에 종합적으로 항균력을 갖는 Streptomyces sp. A-2를 선발하여 그 활성물질(活性物質)의 특성을 조사한 결과는 다음과 같다. 1. G.Y.B., $M\ddot{u}eller$, B.H.I., Czapek 등의 배지중에서 길항성(拮抗性)의 효과가 가장 잘 이전되는 배지는 G.Y.B. 및 B.H.I. 배지이었고, 주(主) 활성물질(活性物質)은 에칠아세테이트로 이전(移轉)되는 군과 수층(水層)에 잔존하는 군으로 구분되었으며 이들 물질은 열(熱)과 압력(壓力)에 매우 강한 결태형태(結台形態)를 보였다. 2. 길항성(拮抗性) Streptomyces sp. A-2에 의해 배양된 여액의 pH를 3이나 12로 조정하여 길항물질을 추출하여 3개 식물병원균에 대한 길항력 검정을 실시한 결과 pH를 달리한 추출법에서 별다른 차이점이 없었다. 이들 분획의 UV 스펙트럼은 폴리엔 길항활성의 마크로라이드의 그것과 유사하였으므로 폴리엔계 항생제가 이 균주의 길항성에 관련하는 주(主) 물질(物質)이라고 추정되었다.

  • PDF

Antimicrobial Active Substances from Entomopathogenic Fungi (Various Applications of Entomopathogenic Fungi)

  • Shin, Tae Young;Woo, Soo Dong;Kim, Jeong Jun
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.13-13
    • /
    • 2016
  • Insects constitute the largest and most diverse group of animals in the world. They also serve as the hosts or nutrient sources for an immense assemblage of pathogens, parasites, and predators. More than 700 fungal species from 100 genera have adopted an entomopathogenic lifestyle. Although entomopathogenic fungi were studied as only biocontrol agents against a variety of pests in various countries, it has been recently focused their additional roles in nature. They are antagonists to/against plant pathogens, endophytes, and possibly even plant growth promoting agents. The potential antimicrobial effect against fungal plant pathogens by an isolate of entomopathogenic fungi including Beauveria bassiana, Lecanicillium spp., and Isaria fumosorosea have been reported since late 1990s, but wasn't reported pathogenicity of the isolate against pests. Later, a Canadian Lecanicillium sp. isolate and L. longisporium isolated from Vertalec$^{(R)}$ showed simultaneous control effect against both aphid and cucumber powder mildew. Therefore, the antimicrobial activities of 342 fungi isolates collected from various regions and conditions in Korea were evaluated against plant pathogenic fungus Botrytis cinerea using dual culture technique on agar plate. As a result, 186 isolates (54.4%) shown the antifungal activity against B. cinerea. The culture filtrates of selected fungi completely suppressed the growth of the microorganisms, indicating that suppression was due to the presence of antimicrobial substances in the culture filtrate. Mode of action of these fungi against insect involves the attachment of conidia to the insect cuticle, followed by germination, cuticle penetration, and internal dissemination throughout the insect. During infection process, secreted enzymes, proteinous toxins, and/or secondary metabolites secreted by entomopathogenic fungi can be used to overcome the host immune system, modify host behavior, and defend host resources. Recently, secondary metabolites isolated from entomopathogenic fungi have been reported as potential bioactive substances. Generally, most of bioactive substances produced by entomopathogenic fungi have reported low molecular weight (lower than 1,000 g/mol) as peptide and, in contrast the high molecular weight fungal bioactive substances are rare. Most substances based on entomopathogenic fungi were shown antimicrobial activity with narrow control ranges. In our study we analyzed the antimicrobial substances having antagonistic effects to B. cinerea. Antimicrobial substances in our fungal culture filtrates showed high thermostability, high stability to proteolytic enzymes, and hydrophilicity and their molecular weights were differed from substance. In conclusion, entomopathogenic fungi showed pathogenicity against insect pests and culture filtrate of the fungi also shown to antimicrobial activity. In the future, we can use the entomopathogenic fungi and its secondary metabolites to control both insect pest control and plant pathogenic fungi simultaneously.

  • PDF

Effects of wild or mutated inoculants on rye silage and its rumen fermentation indices

  • Paradhipta, Dimas Hand Vidya;Joo, Young Ho;Lee, Hyuk Jun;Lee, Seong Shin;Kwak, Youn Sig;Han, Ouk Kyu;Kim, Dong Hyeon;Kim, Sam Churl
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.949-956
    • /
    • 2020
  • Objective: This study was conducted to confirm the effects of new inoculants producing-antifungal or esterase substances on rye silage and its rumen fermentation indices by comparing wild with mutated types. Methods: Rye harvested at dough stage was ensiled into 3 L mini bucket silo (1 kg) for 90 d in triplicate following: distilled water at 20 μL/g (CON); Lactobacillus brevis 100D8 (AT) and its inactivation of antifungal genes (AT-m) at 1.2×105 cfu/g, respectively; and Leuconostoc holzapfelii 5H4 (FD) and its inactivation of esterase genes (FD-est) at 1.0×105 cfu/g, respectively. After silo opened, silage was sub-sampled for the analysis of ensiling quality and its rumen fermentation indices. Results: Among the wild type inoculants (CON vs AT vs FD), FD inoculant had higher (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in rumen, while AT inoculant had higher (p<0.05) lactate, acetate, and lactic acid bacteria in silage. Silage pH and the potentially degradable fraction in rumen increased (p<0.05) by inactivation of antifungal activity (AT vs AT-m), but lactate, acetate, and lactic acid bacteria of silage decreased (p<0.05). In silage, acetate increased (p<0.05) by inactivation of esterase activity (FD vs FD-est) with decreases (p<0.05) of pH, ammonia-N, lactate, and yeast. Moreover, inactivation of esterase activity clearly decreased (p<0.05) in vitro digestibilities of dry matter and neutral detergent fiber, the total degradable fraction, and total volatile fatty acid in the rumen. Conclusion: This study concluded that FD inoculant confirmed esterase activity on rye silage harvested at dough stage, while AT inoculant could not be confirmed with antifungal activity due to the absence of mold in all silages.

대파(Allium fistulosum L)로부터 fistulosides의 분리와 분리 물질의 항진균 활성 (Antifungal Activity of Fistulosides, Steroidal Saponins, from Allium fistulosum L)

  • 손호용;금은주;류희영;전수진;김남순;손건호
    • 생명과학회지
    • /
    • 제16권2호
    • /
    • pp.310-314
    • /
    • 2006
  • 대파(Allium fistulosum L)는 백합과 다년초로서 한국, 일본 중국 등 전 세계적으로 식용으로 재배되어 왔다. 현재까지 대파의 다양한 생리활성이 보고되어 왔으나, 항균 활성에 대해서는 거의 보고되어 있지 않다. 본 연구에서는 대파 식용부위로부터 강력한 항미생물성 steroidal saponins (fistuloside A, B, 및 C)을 분리하였고, 이들의 항균력을 병원성균 및 식품부패균을 대상으로 평가하였다. Fistuloside A 및 C는 강력한 항진균 활성과 항Proteus 세균활성을 나타낸 반면, fistuloside B는 항진균 활성만 인정되었다. 특히 fistuloside C는 $3.1{\sim}6.2{\mu}g/ml$의 MIC (minimal inhibitory concentration) 및 MFC (minimal fungicidal concentration)를 나타내어 강력한 항진균 활성이 진균사멸에 의한 항균효과임을 확인하였다. 본 연구결과는 대파가 미생물 감염증 제어용으로 사용되어 온 근거를 제시하며, 또한 fistuloside C의 항진균제로서의 이용 가능성을 제시하고 있다.

Marine Sponges as a Drug Treasure

  • Anjum, Komal;Abbas, Syed Qamar;Shah, Sayed Asmat Ali;Akhter, Najeeb;Batool, Sundas;Hassan, Syed Shams ul
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.347-362
    • /
    • 2016
  • Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge's derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines.

Fusarium graminearum이 생산하는 몇가지 물질의 분리정제 및 항균 활성 (Isolation and Purification of Several Substances Produced by Fusarium graminearum and Their Antimicrobial Activities)

  • 김병섭;김건우;이종규;이인원;조광연
    • 한국식물병리학회지
    • /
    • 제11권2호
    • /
    • pp.158-164
    • /
    • 1995
  • 토마토의 엽권에서 분리한 Fusariym graminearum이 분비하는 물질은 벼 도열병균(Pyricularia oryzae)의 여러 종의 식물병원 진균에 대한 항균활성을 나타내었으며, 이러한 활성물질을 PDA에서 본 균을 배양 한 후 chloroform으로 추출하여 분리정제 하였다. HPLC에 의하여 5종류의 활성 물질을 분획하였으며, 그중 1번(F402) 화합물을 벼 도열병균(P. oryzae)을 포함한 22개 식물 병원 진균에 대하여 살균 활성범위를 조사한 결과, 이 화합물은 50$\mu\textrm{g}$/ml 농도에서 Pythium ultimum, Rhizoctonia solani, Sclerotinia sclerotiorum은 전혀 억제하지 못하였으며, Phytophthora spp., Cladosporium fulvum, Fusarium spp., Corynespora cassicola에는 어느 정도의 활성이 있었지만 낮게 나타났고, P. oryzae, Cochliobolus miyabeanus, Alternaria solani는 100% 억제하여 활성이 높게 나타났다. 또한 장내 세균에 대한 활성을 MIC로 비교할 때 Streptococcus pyogenes, Streptococcus faecium에 대하여는 각각 12.5, 25 $\mu\textrm{g}$/ml였고 Staphylococcus aureus는 25-50$\mu\textrm{g}$/ml으로 나타났으며, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella aerogenes, Enterobacter cloacae에서는 100$\mu\textrm{g}$/ml 이상으로 활성이 나타나지 않았다. F402를 200$\mu\textrm{g}$/ml의 농도로 직접 살포한 식물체에서의 방제효과는 벼도열병, 벼 깨씨무늬병, 보리 흰 가루병에 대하여는 80%이상이었으나, 벼 잎집무늬마름병, 오이 잿빛곰팡이병, 토마토 역병, 밀 녹병에서는 낮았다.

  • PDF

탄저병균에 길항력이 우수한 식물내생세균 Burkholderia cepacia EB215의 분리 및 특성 규명 (Isolation and Characterization of Burkholderia cepacia EB215, an Endophytic Bacterium Showing a Potent Antifungal Activity Against Colletotrichum Species)

  • 박지현;최경자;이선우;장경수;임희경;정영륜;조광연;김진철
    • 한국미생물·생명공학회지
    • /
    • 제33권1호
    • /
    • pp.16-23
    • /
    • 2005
  • 식물내생미생물을 이용하여 다양한 작물에 발병하는 탄저병을 방제하기 위한 미생물 살균제를 개발하기 위하여 건전한 식물체 조직으로부터 총 260개 균주를 분리하였다 이들은 액체배지에 배양한 후 오이 탄저병(Colletotrichum orbiculare)에 대하여 in vivo항균활성을 조사한 결과 28개의 균주가 $90\%$ 이상의 높은 방제활성을 보였다. 이들 28개의 균주의 배양액을 1/3로 희석하여 처리하였을 경우에는 18개 균주가 $70\%$ 이상의 방제활성을 보였다. 이들 18개의 균주에 대하여 고추 탄저병균(C. coccodes)에 대한 in vivo항균활성과 고추 탄저병균(C. acutatum)에 대한 in vitro 항균활성을 조사한 결과 EB215균주가 가장 우수한 활성을 보여주었다. 이 균은 생리$\cdot$생화학적 특성과 Biolog실험 및 16S rDNA 유전자 서열에 의해 Burkholderia cepacial 동정되었다. B. cepacia EB215균주의 배양액은 고추 탄저병 외에 벼 도열병(Magnaporthe grisea), 벼 잎집무의마름병(Corticium sasaki), 토마토 잿빛곰팡이병 (Botrytis cinerea) 및 토마토 역병 (Phytophthora infestans) 등에 높은 항균활성을 보였다. 현재 이 균주로부터 항균물질의 분리 및 구조 동정에 대한 연구를 실시하고 있다.

식물 성장 촉진에 사용에 있어 Bacillus mojavensis KJS-3의 특징 (Characterization of Bacillus mojavensis KJS-3 for the Promotion of Plant Growth)

  • 김강민;유걸;고윤석;강재선
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.910-916
    • /
    • 2015
  • 최근 식물 성장에 있어 곰팡이 독소에 관련된 질병에 효과가 있는 Bacillus mojavensis 균주 사용의 보고가 있다. 우리는 B. mojavensis KJS-3균주의 다양한 온도, 염도, 에탄올, pH에서 성장하는 특징을 확인 하였다. B. mojavensis KJS-3균주는 Polymerase chain reaction 분석에 의해 fengycin을 LC-MS/MS 분석을 통해서는 iturin 및 surfactin 와 같은 cyclic lipopeptides를 생산함을 확인 하였다. B. mojavensis KJS-3균주는 식물 유해 곰팡이 균주인 Botrytis cinerea, Rhizoctonia solani AG-4, Sclerotinia sclerotiorum, Colletotricum goeosporioides에 항곰팡이 효과가 있음을 확인하였고 이 결과를 바탕으로 인삼재배에 있어 B. mojavensis KJS-3를 사용하여 성장을 관찰한 결과 뿌리 내에서 성장하여 plant growth promoting endophyte가 있음을 알 수 있었다. 이러한 특징들에 의해 미생물 농약 및 비료로 사용할 수 있을 것이다.

Biosurfactant as a microbial pesticide

  • Lee, Baek-Seok;Choi, Sung-Won;Choi, Ki-Hyun;Lee, Jae-Ho;Kim, Eun-Ki
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.40-44
    • /
    • 2003
  • Soil-borne infectious disease including Pythium aphanidermatum and Rhizoctonia solani causes severe damage to plants, such as cucumber. This soil-borne infectious disease was not controlled effectively by chemical pesticide. Since these diseases spread through the soil, chemical agents are usually ineffective. Instead, biological control, including antagonistic microbe can be used as a preferred control method. An efficient method was developed to select an antagonistic strain to be used as a biological control agent strain. In this new method, surface tension reduction potential of an isolate was included in the ‘decision factor’ in addition to the other factors, such as growth rate, and pathogen inhibition rate. Considering these 3 decision factors by a statistical method, an isolate from soil was selected and was identified as Bacillus sp. GB16. In the pot test, this strain showed the best performance among the isolated strains. The lowest disease incidence rate and fastest seed growth was observed when Bacillus sp. GB16 was used. Therefore this strain was considered as plant growth promoting rhizobacteria (PGPR). The action of surface tension reducing component was deduced as the enhancement of wetting, spreading, and residing of antagonistic strain in the rhizosphere. This result showed that new selection method was significantly effective in selecting the best antagonistic strain for biological control of soil-borne infectious plant pathogen. The antifungal substances against P. aphanidermatum and R. solani were partially purified from the culture filtrates of Bacillus sp. GB16. In this study, lipopeptide possessing antifungal activity was isolated from Bacillus sp. GB16 cultures by various purification procedures and was identified as a surfactin-like lipopeptide based on the Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), high performance liquid chromatography mass spectroscopy (HPLC-MS), and quadrupole time-of-flight (Q-TOF) ESI-MS/MS data. The lipopeptide, named GB16-BS, completely inhibited the growth of Pythium aphanidermatum, Rhizoctonia solani, Penicillium sp., and Botrytis cineria at concentrations of 10 and 50 mg/L, respectively. A novel method to prevent the foaming and to provide oxygen was developed. During the production of surface active agent, such as lipopeptide (surfactin), large amount of foam was produced by aeration. This resulted in the carryover of cells to the outside of the fermentor, which leads to the significant loss of cells. Instead of using cell-toxic antifoaming agents, low amount of hydrogen peroxide was added. Catalase produced by cells converted hydrogen peroxide into oxygen and water. Also addition of corn oil as an oxygen vector as well as antifoaming agent was attempted. In addition, Ca-stearate, a metal soap, was added to enhance the antifoam activity of com oil. These methods could prevent the foaming significantly and maintained high dissolved oxygen in spite of lower aeration and agitation. Using these methods, high cell density, could be achieved with increased lipopeptide productivity. In conclusion to produce an effective biological control agent for soil-borne infectious disease, following strategies were attempted i) effective screening of antagonist by including surface tension as an important decision factor ii) identification of antifungal compound produced from the isolated strain iii) novel oxygenation by $H_2O_2-catalase$ with vegetable oil for antifungal lipopeptide production.

  • PDF