DOI QR코드

DOI QR Code

Marine Sponges as a Drug Treasure

  • Received : 2016.03.24
  • Accepted : 2016.05.19
  • Published : 2016.07.01

Abstract

Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge's derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines.

Keywords

References

  1. Amade, P., Charroin, G., Baby, C. and Vacelet, J. (1987) Antimicrobial activity of marine sponges of Mediterranean. Sea. Mar. Biol. 94, 271-275. https://doi.org/10.1007/BF00392940
  2. Amade, P. H., Pesando, D. and Chevolot, L. (1982) Antimicrobial activities of marine from French Polynesia and Brittany. Mar. Biol. 70, 223-228. https://doi.org/10.1007/BF00396840
  3. Amigo, M., Terencio, M. C., Paya, M., Iodice, C. and De Rosa, S. (2007) Synthesis and evaluation of diverse thio avarol derivatives as potential UVB photoprotective candidates. Bioorg. Med. Chem. Lett. 17, 2561-2565. https://doi.org/10.1016/j.bmcl.2007.02.007
  4. Ang, K. K., Holmes, M. J. and Kara, U. A. (2001) Immunemediated parasite clearance in mice infected with Plasmodium berghei following treatment with manzamine A. Parasitol. Res. 87, 715-721. https://doi.org/10.1007/s004360000366
  5. Arimoto, H., Hayakawa, I., Kuramoto, M. and Uemura, D. (1998) Absolute stereochemistry of halichlorine; a potent inhibitor of VCAM-1 induction. Tetrahedron Lett. 39, 861-862. https://doi.org/10.1016/S0040-4039(97)10714-6
  6. Ashok, P., Ganguly, S. and Murugesan S. (2014) Manzamine alkaloids:isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discovr. Today 19, 1781-1791. https://doi.org/10.1016/j.drudis.2014.06.010
  7. Aviles, E. and Rodriguez, A. D. (2010) Monamphilectine A, a Potent Antimalarial ${\beta}$-Lactam from Marine Sponge Hymeniacidon sp:Isolation, Structure, Semisynthesis, and Bioactivity. Org. Lett. 12, 5290-5293. https://doi.org/10.1021/ol102351z
  8. Baird, J. K. (2013) Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin. Microbiol. Rev. 26, 36-57. https://doi.org/10.1128/CMR.00074-12
  9. Barrese, V. and Taglialatela, M. (2013) New advances in beta-blocker therapy in heart failure. Front. Physiol. 4, 323.
  10. Bergmann, W. and Feeney, R. J. (1950) The isolation of a new thymine pentoside from sponges. J. Am. Chem. Soc. 72, 2809-2810.
  11. Bergmann, W. and Feeney, R. J. (1951) Contribution to the study of marine products. J. Org. Chem. 16, 981-987. https://doi.org/10.1021/jo01146a023
  12. Bergmann, W. and Swift, A. N. (1951) Contributions to the study of marine products. XXX. Component acids of lipids sponges. I. J. Org. Chem. 16, 1206-1221. https://doi.org/10.1021/jo50002a005
  13. Blackburn, C. L., Hopmann, C., Sakowicz, R., Berdelis, M, S., Goldstein, L. S. B. and Faulkner, D. J. (1999) Adociasulfates 1-6, inhibitors of kinesin motor proteins from the sponge Haliclona (aka Adocia) sp. J. Org. Chem. 64, 5565-5570. https://doi.org/10.1021/jo9824448
  14. Blunt, J. W., Copp, B. R., Keyzers, R. A., Munroa, M. H. and Prinsep, M. R. (2013) Marine natural products. Nat. Prod. Rep. 30, 237-323. https://doi.org/10.1039/C2NP20112G
  15. Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2005) Marine natural products. Nat. Prod. Rep. 22, 15-61. https://doi.org/10.1039/b415080p
  16. Blunt, J. W., Copp, B. R., Munro, M. H., Northcote, P. T. and Prinsep, M. R. (2006) Marine natural products. Nat. Prod. Rep. 23, 26-78. https://doi.org/10.1039/b502792f
  17. Boonlarppradab, C. and Faulkner, D. J. (2007) Eurysterols A and B, cytotoxic and antifungal steroidal sulfates from a marine sponge of the genus Euryspongia. J. Nat. Prod. 70, 846-848. https://doi.org/10.1021/np060472c
  18. Borchard, U. (1998) Pharmacological properties of b-adrenoreceptor blocking drugs. J. Clin. Basic Cardiol. 1, 5-9.
  19. Bradshaw, D., Hill, C. H., Nixon, J. S. and Wilkinson, S. E. (1993) Therapeutic potential of protein kinase C inhibitors. Agents Actions 38, 135-147. https://doi.org/10.1007/BF02027225
  20. Brazilian Health Ministry (2002) Epidemiological survey of malaria in Brazil, Funasa, Brasilia. Available from: http://www.funasa.gov.br/.
  21. Burkholder, P. R. and Ruetzler, K. (1969) Antimicrobial activity of some marine sponges. Nature 222, 983-984. https://doi.org/10.1038/222983a0
  22. Capon, R. J., Skene, C., Lacey, E., Gill, J. H., Wadsworth, D. and Friedel, T. (1999) Geodin A magnesium salt: a novel nematocide from a southern Australian marine sponge, Geodia. J. Nat. Prod. 62, 1256-1259. https://doi.org/10.1021/np990144v
  23. Capon, R. J., Vuong, D., McNally, M., Peterle, T., Trotter, N., Lacey, E. and Gill, J. H. (2005) (+)-Echinobetaine B: isolation, structure elucidation, synthesis and preliminary SAR studies on a new nematocidal betaine from a southern Australian marine sponge, Echinodictyum sp. Org Biomol. Chem. 3, 118-122. https://doi.org/10.1039/b414839h
  24. Caraballo, H. and King, K. (2014) Emergency department management of mosquito-borne illness: malaria, dengue, and west nile virus. Emerg. Med. Pract. 16, 1-23.
  25. Carroll, J., Johnsson, E. N., Ebel, R., Hartman, M. S., Holman, T. R. and Crews, P. (2001) Probing sponge-derived terpenoids for human 15-L-lipoxygenase inhibitors. J. Org. Chem. 66, 6847-6851. https://doi.org/10.1021/jo015784t
  26. Chackalamannil, S. and Xia, Y. (2006) Thrombin receptor (PAR-1) antagonists as novel antithrombotic agents. Expert Opin. Ther. Pat. 16, 493-505. https://doi.org/10.1517/13543776.16.4.493
  27. Cheng, S., Wen, Z., Chiou, S., Hsu, C., Wang, S., Dai, C., Chiang, M. Y. and Duh, C. (2008) Durumolides A-E, anti-inflammatory and antibacterial cembranolides from the soft coral Lobophytum durum. Tetrahedron 64, 9698-9704. https://doi.org/10.1016/j.tet.2008.07.104
  28. Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. and Ianaro, A. (1999) Glycolipids from sponges, VII: simplexides, novel immunosuppressive glycolipids from the Caribbean sponge Plakortis simplex. Bioorg. Med. Chem. Lett. 9, 271-276. https://doi.org/10.1016/S0960-894X(98)00719-7
  29. Cutignano, A., Bifulco, G., Bruno, I., Casapullo, A., Gomez-Paloma, L. and Riccio, R. (2000) Dragmacidin F: A New Antiviral Bromoindole Alkaloid from the Mediterranean Sponge Halicortex sp. Tetrahe-dron 56, 3743-3748. https://doi.org/10.1016/S0040-4020(00)00281-7
  30. D Ambrosio, M., Guerriero, A., Deharo, E., Debitus, C., Munoz, V. and Pietra, F. (1998) New types of potentially antimalarial agents: epidioxy-substituted norditerpene and norsesterpenes from the marine sponge Diacarnuslevii. Helv. Chim. Acta 81, 1285-1292. https://doi.org/10.1002/hlca.19980810539
  31. de Almeida Leone, P., Redburn, J., Hooper, J. N. and Quinn, R. J. (2000) Polyoxygenated dysidea sterols that inhibit the binding of [I125] IL-8 to the human recombinant IL-8 receptor type A. J. Nat. Prod. 63, 694-697. https://doi.org/10.1021/np9904657
  32. De Clercq, E. (2002) New anti-HIV agents and targets. Med. Res. Rev. 22, 531-565. https://doi.org/10.1002/med.10021
  33. De Clercq, E. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30, 115-133. https://doi.org/10.1016/j.jcv.2004.02.009
  34. Dennedy, M. C., Houlihan, D. D., McMillan, H. and Morrison, J. J. (2002) b2- and b3-Adrenoreceptor agonists: human myometrial selectivity and effects on umbilical artery tone. Am. J. Obstet. Gynecol. 187, 641-647. https://doi.org/10.1067/mob.2002.125277
  35. de Silva, E. D. and Scheuer, P. J. (1980) Manoalide, an antibiotic sesterterpenoid from the marine sponge luffariella variabilis (polejaeff). Tetrahedron. Lett. 21, 1611-1614. https://doi.org/10.1016/S0040-4039(00)77766-5
  36. Donia, M. and Hamann, M. T. (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 3, 338-348. https://doi.org/10.1016/S1473-3099(03)00655-8
  37. Dunbar, D. C., Rimoldi, J. M., Clark, A. M., Kelly, M. and Hamann, M. T. (2000) Anti-cryptococcal and nitric oxide synthase inhibitory imidazole alkaloids from the calcareous sponge Leucetta cf chagosensis. Tetrahedron 56, 8795-8798. https://doi.org/10.1016/S0040-4020(00)00821-8
  38. Ebada, S. S., Wray, V., de Voogd, N. J., Deng, Z., Lin, W. and Proksch, P. (2009) Two new jaspamide derivatives from the marine sponge Jaspis splendens. Mar. Drugs 7, 435-444. https://doi.org/10.3390/md7030435
  39. Edgar, V. A., Cremaschi, G. A., Sterin-Borda, L. and Genaro, A. M. (2002) Altered expression of autonomic neurotransmitter receptors and proliferative responses in lymphocytes from a chronic mild stress model of depression: effects of fluoxetine. Brain Behav. Immun. 16, 333-350. https://doi.org/10.1006/brbi.2001.0632
  40. Elhady, S. S., El-Halawany, A. M., Alahdal, A. M., Hassanean, H. A. and Ahmed, S. A. (2016) A new bioactive metabolite isolated from the red sea marine sponge Hyrtios erectus. Molecules 21, 82. https://doi.org/10.3390/molecules21010082
  41. Elyakov, G. B., Kuznetsova, T., Mikhailov, V. V., Maltsev, I. I., Voinov, V. G. and Fedoreyev, S. A. (1991) Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47, 632-633. https://doi.org/10.1007/BF01949894
  42. Faulkner, D. J. (2000) Marine natural products. Nat. Prod. Rep. 17, 7-55. https://doi.org/10.1039/a809395d
  43. Faulkner, D. J. (2001) Marine natural products. Nat. Prod. Rep. 18, 1-49. https://doi.org/10.1039/b006897g
  44. Faulkner, D. J. (2002) Marine natural products. Nat. Prod. Rep. 19, 1-48.
  45. Fedoreev, S. A., Prokof'eva, N. G., Denisenko, V. A. and Rebachuk, N. M. (1988) Cytotoxic activity of aaptamines from suberitid marine sponges. Pharm. Chem. J. 22, 615-618. https://doi.org/10.1007/BF00763625
  46. Ford, P. W., Gustafson, K. R., McKee, T. C., Shigematsu, N., Maurizi, L. K., Pannell, L. K., Williams, D. E., De Silva, E. D., Lassota, P., Alien, T. M., Van Soest, R., Andersen, R. J. and Boyd, M. R. (1999) Papuamides A-D, HIV-inhibitory and cytotoxic depsipeptides from the sponges Theonella mirabilis and Theonella swinhoei collected in Papua New Guinea. J. Am. Chem. Soc. 121, 5899-5909. https://doi.org/10.1021/ja990582o
  47. Frakes, M. A. (2001) Muscle relaxant choices for rapid sequence induction. Air Med. J. 20, 20-21. https://doi.org/10.1067/mmj.2001.116992
  48. Gafni, J., Munsch, J. A., Lam, T. H., Catlin, M. C., Costa, L. G., Molinski, T. F. and Pessah, I. N. (1997) Xestospongins: potent membrane permeable blockers of the inositol 1,4,5-triphosphate receptor. Neuron 19, 723-733. https://doi.org/10.1016/S0896-6273(00)80384-0
  49. Garcia-Ruiz, J. C., Amutio, E. and Ponton, J. (2004) Invasive fungal infection in immunocompromised patients. Rev. Iberoam. Micol. 21, 55-62.
  50. Gaspar, H., Santos, S., Carbone, M., Rodrigues, A. S., Rodrigues, A. I., Uriz, M. J., Savluchinske Feio, S. M., Melck, D., Humanes, M. and Gavagnin, M. (2008) Isomeric furanosesquiterpenes from the Portuguese marine sponge Fasciospongia sp. J. Nat. Prod. 71, 2049-2052. https://doi.org/10.1021/np800346c
  51. Giusiano, G., Mangiaterra, M., Rojas, F. and Gamez, V. (2004) Yeasts species distribution in Neonatal Intensive Care Units in northeast Argentina. Mycoses 47, 300-303. https://doi.org/10.1111/j.1439-0507.2004.00993.x
  52. Giusiano, G., Mangiaterra, M., Rojas, F. and Gamez, V. (2005) Azole Resistance in Neonatal Intensive Care Units in Argentina. J. Chemother. 17, 347-350. https://doi.org/10.1179/joc.2005.17.3.347
  53. Greve, H., Meis, S., Kassack, M. U., Kehraus, S., Krick, A., Wright, A. D. and Konig, G. M. (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y(11) receptor. J. Med. Chem. 50, 5600-5607. https://doi.org/10.1021/jm070043r
  54. Griffith, O. W. and Gross, S. S. (1996) Inhibitors of nitric oxide synthases. In Methods in nitric oxide research (J. Stamler and M. Feelish, Ed.), pp. 187-208. Wiley & Sons, New York.
  55. Grimwood, K. and Lambert, S. B. (2009) Rotavirus vaccines: opportunities and challenges. Hum. Vaccin. 5, 57-69. https://doi.org/10.4161/hv.5.2.6924
  56. Hadas, E., Shpigel, M. and Ilan, M. (2009) Particulate organic matter as a food source for a coral reef sponge. J. Exp. Biol. 212, 3643-3650. https://doi.org/10.1242/jeb.027953
  57. Hertiani, T., Edrada-Ebel, R., Ortlepp, S., van Soest, R. W., de Voogd, N. J., Wray, V., Hentschel, U., Kozytska, S., Muller, W. E. and Proksch, P. (2010) From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges. Bioorg. Med. Chem. 18, 1297-1311. https://doi.org/10.1016/j.bmc.2009.12.028
  58. Hibbs, R. E. and Zambon, A. C. (2011) Control of muscle spasms and rigidity. Agents acting at the neuromuscular junction and autonomic ganglia. In Goodman & Gilman's the pharmacological basis of therapeutics (L. L. Brunton, B. A. Chabner, B. C. Knollman, Ed.), pp. 266-276. McGraw-Hill, New York.
  59. Hill, R. T., Hamann, M., Peraud, O. and Kasanah, N., inventors; University of Maryland Biotechnology Institute, assignee. Manzamineproducing actinomycetes. United States patent US 20050244938 A1. 2005 Nov 3.
  60. Hood, K. A., West, L. M., Rouwe, B., Northocote, P. T., Berridge, M. V., Wakefield, S. J. and Miller, J. H. (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res. 62, 3356-3360.
  61. Hooper, J. N. A. and van Soest, R. W. M. (2002) Systema porifera: a guide to the classification of sponges. Kluwer Academic/Plenum Publishers, New York.
  62. Hu, G. P., Yuan, J., Sun, L., She, Z. G., Wu, J. H., Lan, X. J., Zhu, X., Lin, Y. C. and Chen, S. P. (2011) Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 9, 514-525. https://doi.org/10.3390/md9040514
  63. Hua, H. M., Peng, J., Fronczek, F. R., Kelly, M. and Hamann, M. T. (2004) Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorg. Med. Chem. 12, 6461-6464. https://doi.org/10.1016/j.bmc.2004.09.026
  64. Hultgren, K. M. and Duffy, J. E. (2010) Sponge host characteristics shape the community structure of their shrimp associates. Mar. Ecol. Prog. Ser. 407, 1-12. https://doi.org/10.3354/meps08609
  65. Ikenaga, M., Higaki, Y., Saku, K. and Uehara, Y. (2016) High-Density Lipoprotein Mimetics: a Therapeutic Tool for Atherosclerotic Diseases. J. Atheroscler. Thromb. 23, 385-394. https://doi.org/10.5551/jat.33720
  66. Jang, K. H., Chung, S. C., Shin, J., Lee, S. H., Kim, T. I., Lee, H. S. and Oh, K. B. (2007). Aaptamines as sortase A inhibitors from the tropical sponge Aaptos aaptos. Bioorg. Med. Chem. Lett. 17, 5366-5369. https://doi.org/10.1016/j.bmcl.2007.08.007
  67. Jares-Erijman, E. A., Sakai, R. and Rinehart, K. L. (1991) Crambescidins: new antiviral and cytotoxic compounds from the sponge Crambe crambe. J. Org. Chem. 56, 5712-5715. https://doi.org/10.1021/jo00019a049
  68. Juagdan, E. G., Kalindindi, R. S., Scheuer, P. J. and Kelly-Borges, M. (1995) Elenic acid, an inhibitor of topoisomerase II, from a sponge, Plakinastrella sp. Tetrahedron Lett. 36, 2905-2908. https://doi.org/10.1016/0040-4039(95)00432-C
  69. Kalinin, V. I., Ivanchina, N. V., Krasokhin, V. B., Makarieva, T. N. and Stonik, V. A. (2012). Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles. Mar. Drugs 10, 1671-1710. https://doi.org/10.3390/md10081671
  70. Kang, J.-H. (2014) Protein kinase C (PKC) isozymes and cancer. New J. Sci. 2014, 231418.
  71. Kitagawa, I., Kobayashi, M., Kitanaka, K., Kido, M. and Kyogoku, Y. (1983) Marine natural products, XII: on the chemical constituents of the Okinawan marine sponge Hymeniacidon aldis. Chem. Pharm. Bull. 31, 2321-2328. https://doi.org/10.1248/cpb.31.2321
  72. Kobayashi, J. and Ishibashi, M. (1993) Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93, 1753-1769. https://doi.org/10.1021/cr00021a005
  73. Konig, G. M., Wright, A. D. and Angerhofer, C. K. (1996) Novel potent antimalarial diterpene isocyanates, isothiocyanates, and isonitriles from the tropical marine sponge Cymbastela hooperi. J. Org. Chem. 61, 3259-3267. https://doi.org/10.1021/jo952015z
  74. Kossuga, M. H., Nascimento, A. M., Reimao, J. Q., Tempone, A. G., Taniwaki, N. N., Veloso, K., Ferreira, A. G., Cavalcanti, B. C., Pessoa, C., Moraes, M. O., Mayer, A. M., Hajdu, E. and Berlinck, R. G. (2008) Antiparasitic, antineuroinflammatory, and cytotoxic polyketides from the marine sponge Plakortis angulospiculatus collected in Brazil. J. Nat.Prod. 71, 334-339. https://doi.org/10.1021/np0705256
  75. Kolodziejczyk, J. and Ponczek, M. B. (2013) The role of fibrinogen, fibrin and fibrin (ogen) degradation products (FDPs) in tumor progression. Contemp. Oncol. (Pozn.) 17, 113-119.
  76. Laport, M. S., Santos, O. C. and Muricy, G. (2009) Marine sponges:potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 10, 86-105. https://doi.org/10.2174/138920109787048625
  77. Leal, M. C., Puga, J., Serodio, J., Gomes, N. C. M. and Calado, R. (2012) Trends in the discovery of new marine natural products from invertebrates over the last two decades - where and what are we bioprospecting? PLoS ONE 7, e30580. https://doi.org/10.1371/journal.pone.0030580
  78. Linington, R. G., Robertson, M., Gauthier, A., Finlay, B. B., MacMillan, J. B., Molinski, T. F., van Soest, R. and Andersen, R. J. (2006) Caminosides BD, Antimicrobial Glycolipids Isolated from the Marine Sponge Caminus s phaeroconia. J. Nat. Prod. 69, 173-177. https://doi.org/10.1021/np050192h
  79. Liu, B., Timar, J., Howlett, J., Diglio, C. A. and Honn, K. V. (1991) Lipoxygenase metabolites of arachidonic and linoleic acids modulate the adhesion of tumor cells to endothelium via regulation of protein kinase C. Cell Regul. 2, 1045-1055. https://doi.org/10.1091/mbc.2.12.1045
  80. Loya, S. and Hizi, A. (1990) The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett. 269, 131-134. https://doi.org/10.1016/0014-5793(90)81137-D
  81. Lundberg, U. (1995) Methods and applications of stress research. Technol. Health Care 3, 3-9.
  82. Maldonado, M., Carmona, C., Velasquez, Z., Puig, A., Cruzado, A., Lopez, A. and Young, C. M. (2005) Siliceous sponges as a silicon sink: An overlooked aspect of the benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799-809. https://doi.org/10.4319/lo.2005.50.3.0799
  83. Maria, M., Lone, G. and Thomas, O. L. (2011) Production of bioactive secondary metabolites by marine vibrionaceae. Mar. Drugs 9, 1440-1468. https://doi.org/10.3390/md9091440
  84. Martins, A., Vieira, H., Gaspar, H. and Santos, S. (2014) Marketed marine natural products in the pharmaceutical and cosmoceutical industries: tips for success. Mar. Drugs 12, 1066-1101. https://doi.org/10.3390/md12021066
  85. Maryanoff, B. E., Qiu, X., Padmanabhan, K. P., Tulinsky, A., Almond, H. R., Andrade-Gordon, P., Greco, M. N., Kauffman, J. A., Nicolaou, K. C., Liu, A., Brungs, P. H. and Fusetani, N. (1993) Molecular basis for the inhibition of human alpha-thrombin by the macrocyclic peptide cyclotheonamide A. Proc. Natl. Acad. Sci. U.S.A. 90, 8048-8052. https://doi.org/10.1073/pnas.90.17.8048
  86. Matsunaga, S., Fusetani, N. and Konosu, S. (1985) Bioactive marine metabolites, VII: structures of discodermins B, C, and D, antimicrobial peptides from the marine sponge Discodermia kiiensis. Tetrahedron Lett. 26, 855-856. https://doi.org/10.1016/S0040-4039(00)61947-0
  87. Mayer, A. M., Rodriguez, A. D., Berlinck, R. G. and Fusetani, N. (2011) Marine pharmacology in 2007-8: Marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 153, 191-222. https://doi.org/10.1016/j.cbpc.2010.08.008
  88. Mayer, A. M. and Hamann, M. T. (2004) Marine pharmacology in 2000:marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous systems and other miscellaneous mechanisms of action. Mar. Biotechnol. 6, 37-52. https://doi.org/10.1007/s10126-003-0007-7
  89. Mayer, A. M. S. and Jacobs, R. S. (1988) Manoalide: an anti-inflammatory and analgesic marine natural product. Mem. Calif. Acad. Sci. 13, 133.
  90. Mayer, A. M. S. and Lehmann, V. K. B. (2000) Marine pharmacology in 1998: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, anthelmintic, antiplatelet, antiprotozoal, and antiviral activities; with actions on the cardiovascular, endocrine, immune, and nervous systems; and other miscellaneous mechanisms of action. Pharmacologist 42, 62-69.
  91. McCaffrey, E. J. and Endeau, R. (1985) Antimicrobial activity of tropical and subtropical sponges. Mar. Biol. 89, 1-8. https://doi.org/10.1007/BF00392871
  92. Mishra, S. K., Satpathy, S. K. and Mohanty, S. (1999) Survey of malaria treatment and deaths. Bull. World Health Organ. 77, 1020.
  93. Miyamoto, S., Izumi, M., Hori, M., Kobayashi, M., Ozaki, H. and Karaki, H. (2000) Xestospongin C, a selective and membrane-permeable inhibitor of $IP_3$ receptor, attenuates the positive inotropic effect of ${\alpha}$-adrenergic stimulation in guinea-pig papillary muscle. Br. J. Pharmacol. 130, 650-654. https://doi.org/10.1038/sj.bjp.0703358
  94. Miyaoka, H., Shimomura, M., Kimura, H., Yamada, Y., Kim, H. S. and Wataya, Y. (1998) Antimalarial activity of kalahinol A and new relative diterpenoids from the Okinawan sponge, Acanthella sp. Tetrahedron 54, 13467-13474. https://doi.org/10.1016/S0040-4020(98)00818-7
  95. Mol, V. P. L., Raveendran, T. V. and Parameswaran, P. S. (2009) Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick). Int. Biodeterior. Biodegrad. 63, 67-72. https://doi.org/10.1016/j.ibiod.2008.07.001
  96. Momparler, R. L. (2013) Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol. 2, 20. https://doi.org/10.1186/2162-3619-2-20
  97. Morton, S. L., Moeller, P. D., Young, K. A. and Lanoue, B. (1998) Okadaic acid production from the marine dinoflagellate Prorocentrum belizeanum Faust isolated from the Belizean coral reef ecosystem. Toxicon. 36, 201-206. https://doi.org/10.1016/S0041-0101(97)00054-8
  98. Moura, R. M., Queiroz, A. F., Fook, J. M., Dias, A. S., Monteiro, N. K., Ribeiro, J. K., Moura, G. E., Macedo, L. L., Santos, E. A. and Sales, M. P. (2006) CvL, a lectin from the marine sponge Cliona varians: Isolation, characterization and its effects on pathogenic bacteria and Leishmania promastigotes. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 145, 517-523. https://doi.org/10.1016/j.cbpa.2006.08.028
  99. Muller, W. G., Sobel, C., Diehl-Seifert, B., Maidhof, A. and Schroder, H. C. (1987) Influence of the antileukemic and anti-human immunodeficiency virus agent avarol on selected immune responses in vitro and in vivo. Biochem. Pharmacol. 36, 1489-1494. https://doi.org/10.1016/0006-2952(87)90115-8
  100. Muller, W. E., Schröder, H. C., Wiens, M., Perovic-Ottstadt, S., Batel, R. and Muller, I. M. (2004) Traditional and modern biomedical prospecting: Part II-the benefits. Evid. Based Complement. Alternat. Med. 1, 133-144. https://doi.org/10.1093/ecam/neh030
  101. Nausch, B., Heppner, T. J. and Nelson, M. T. (2010) Nerve-released acetylcholine contracts urinary bladder smooth muscle by inducing action potentials independently of $IP_3$-mediated calcium release. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R878-R888. https://doi.org/10.1152/ajpregu.00180.2010
  102. Northcote, P. T., Blunt, J. W. and Munro, M. H. G. (1991) Pateamine: a potent cytotoxin from the New Zealand marine sponge, mycale sp. Tetrahedron Lett. 32, 6411-6414. https://doi.org/10.1016/0040-4039(91)80182-6
  103. Oclarit, J. M., Okada, H., Ohta, S., Kaminura, K., Yamaoka, Y., Iizuka, T., Miyashiro, S. and Ikegami, S. (1994) Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78, 7-16.
  104. Oh, K. B., Mar, W., Kim, S., Kim, J. Y., Lee, T. H., Kim, J. G., Shin, D., Sim, C. J. and Shin, J. (2006) Antimicrobial activity and cytotoxicity of bis (indole) alkaloids from the sponge Spongosorites sp. Biol. Pharm. Bull. 29, 570-573. https://doi.org/10.1248/bpb.29.570
  105. O'Rourke, A., Kremb, S., Bader, T. M., Helfer, M., Schmitt-Kopplin, P., Gerwick, W. H., Brack-Werner, R. and Voolstra, C. R. (2016) Alkaloids from the sponge Stylissa carteri present prospective scaffolds for the inhibition of human immunodeficiency Virus 1 (HIV-1). Mar. Drugs 14, 28. https://doi.org/10.3390/md14020028
  106. Pattenden, G., Critcher, D. J. and Remuinan, M. (2004) Total synthesis of ()-pateamine A, a novel immunosuppressive agent from Mycale sp. Can. J. Chem. 82, 353-365. https://doi.org/10.1139/v03-199
  107. Perry, N. B., Blunt, J. W., Munro, M. H. G. and Thompson, A. M. (1990) Antiviral and antitumor agents from a New Zealand sponge, Mycale sp. 2. Structures and solution conformations of mycalamides A and B. J. Org. Chem. 55, 223-227. https://doi.org/10.1021/jo00288a037
  108. Petit, G. R. and Knight, J. C., inventors; Arizona Board of Regents, assignee. Cribrostatins 3-5. United States patent US 6437128 B1. 2002 Aug 20.
  109. Pettit, R. K., Fakoury, B. R., Knight, J. C., Weber, C. A., Pettit, G. R., Cage, G. D. and Pon, S. (2004) Antibacterial activity of the marine sponge constituent cribrostatin 6. J. Med. Microbiol. 53, 61-65. https://doi.org/10.1099/jmm.0.05250-0
  110. Piel, J. (2004) Metabolites from symbiotic bacteria. Nat Prod Rep. 21, 519-538. https://doi.org/10.1039/b310175b
  111. Piel, J. (2006) Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals. Curr. Med. Chem. 13, 39-50. https://doi.org/10.2174/092986706775197944
  112. Pika, J., Tischler, M. and Andersen, R. J. (1992) Glaciasterols A and B, 9,11-secosteroids from the marine sponge Aplysilla glacialis. Can. J. Chem. 70, 1506-1510. https://doi.org/10.1139/v92-186
  113. Plaza, A., Gustchina, E., Baker, H. L., Kelly, M. and Bewley, C. A. (2007) Mirabamides A-D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J. Nat. Prod. 70, 1753-1760. https://doi.org/10.1021/np070306k
  114. Ponton, J., Ruchel, R., Clemonds, K. V., Coleman, D. C., Grillot, R., Guarro, J., Aldebert, D., Ambroise-Thomas, P., Cano, J., Carrillo-Munoz, A. J., Gene, J., Pinel, C., Stevens, D. A. and Sullivan, D. (2000) Emerging pathogens. Med. Mycol. 38, 225-236. https://doi.org/10.1080/mmy.38.s1.225.236
  115. Proksch, P., Edrada, R. A. and Ebel, R. (2002) Drugs from the seascurrent status and microbiological implications. Appl. Microbiol. Biotechnol. 59, 125-134. https://doi.org/10.1007/s00253-002-1006-8
  116. Proksch, P., Putz, A., Ortlepp, S., Kjer, J. and Bayer, M. (2010) Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev. 9, 475-489. https://doi.org/10.1007/s11101-010-9178-9
  117. Quinn, R. J., Gregson, R. P., Cook, A. F. and Bartlett, A. F. (1980) Isolation and synthesis of 1-methylisoguanisine, a potent pharmacologically active constituent from the marine sponge Tedania digitata. Tetrahedron Lett. 21, 567-568. https://doi.org/10.1016/S0040-4039(01)85558-1
  118. Qureshi, A. and Faulkner, D. J. (1999) Haplosamates A and B: new steroidal sulfamate esters from two haplosclerid sponges. Tetrahedron 55, 8323-8330. https://doi.org/10.1016/S0040-4020(99)00465-2
  119. Rahden-Staron, I. (2002) The inhibitory effect of the fungicides captan and captafol on eukaryotic topoisomerases in vitro and lack of recombinagenic activity in the wing spot test of Drosophila melanogaster. Mutat. Res. 518, 205-213. https://doi.org/10.1016/S1383-5718(02)00107-9
  120. Ramel, G. (2010) Phylum Porifera [cited 2013 Jan]. Available from:http://www.earthlife.net/inverts/porifera.html/.
  121. Rao, V. K., Kasanah, N., Wahyuono, S., Tekwani, B. L., Schinazi, R. F. and Hamann, M. T. (2004) Three new manzamine alkaloids from a common indonesian sponge and their activity against infectious and tropical parasitic diseases. J. Nat. Prod. 67, 1314-1318. https://doi.org/10.1021/np0400095
  122. Rice, L. B. (2006) Antimicrobial resistance in gram-positive bacteria. Am. J. Infect. Control 34, S11-S19. https://doi.org/10.1016/j.ajic.2006.05.220
  123. Romo, D., Rzasa, R. M., Shea, H. A., Park, K., Langenhan, J. M., Sun, L., Akhiezer, A. and Liu, J. O. (1998) Total synthesis and immunosuppressive activity of (-)-pateamine A and related compounds: implementation of a b-lactambased macrocyclization. J. Am. Chem. Soc. 120, 12237-12254. https://doi.org/10.1021/ja981846u
  124. Rubio, B. K., van Soest, R. W. and Crews, P. (2007) Extending the record of meroditerpenes from Cacospongia marine sponges. J. Nat. Prod. 70, 628-631. https://doi.org/10.1021/np060633c
  125. Sagar, S., Kaur, M., Minneman, K. P. (2010) Antiviral lead compounds from marine sponges. Mar. Drugs 8, 2619-2638. https://doi.org/10.3390/md8102619
  126. Sakai, R., Higa, T., Jefford, C. W. and Bernardinelli, G. (1986) Manzamin, A., a novel antitumor alkaloid from a sponge. J. Am. Chem. Soc. 108, 6404-6405. https://doi.org/10.1021/ja00280a055
  127. Sandven, P. (2000) Epidemiology of candidemia. Rev. Iberoam. Micol. 17, 73-81.
  128. Schaschke, N. and Sommerhoff, P. C. (2010) Upgrading a natural product: inhibition of human ${\beta}$-tryptase by cyclotheonamide analogues. Chem. Med. Chem. 5, 367-370. https://doi.org/10.1002/cmdc.200900484
  129. Schwartsmann, G. (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann. Oncol. 11, 235-243.
  130. Shimosaka, A. (2002) Role of NKT cells and a-galactosyl ceramide. Int. J. Hematol. 76, 277-279. https://doi.org/10.1007/BF03165262
  131. Shuman, R.T., Rothenberger, R. B., Campell, C. S., Smith, G. F., Gifford-Moore, D. S. and Gesellchen, P. D. (1993) Highly selective tripeptide thrombm inhibitors. J. Med. Chem. 36, 314-319. https://doi.org/10.1021/jm00055a002
  132. Sipkema, D., Osinga, R., Schatton, W., Mendola, D., Tramper, J. and Wijffels, R. H. (2005) Large scale production of pharmaceuticals by marine sponges: Sea, cell, or biosynthesis. Biotechnol. Bioeng. 90, 201-222. https://doi.org/10.1002/bit.20404
  133. Souza, T. M., Abrantes, J. L., de A Epifanio, R., Leite Fontes, C. F. and Frugulhetti, I. C. (2007) The alkaloid 4-methylaaptamine isolated from the sponge Aaptos aaptos impairs Herpes simplex virus Type 1 penetration and immediate early protein synthesis. Planta Med. 73, 200-205. https://doi.org/10.1055/s-2007-967109
  134. Stead, P., Hiscox, S., Robinson, P, S., Pike, N. B., Sidebottom, P. J., Roberts, A. D., Taylor, N. L., Wright, A. E., Pomponi, S. A. and Langley, D. (2000) Eryloside F, a novel penasterol disaccharide possessing potent thrombin receptor antagonist activity. Bioorg. Med. Chem. Lett. 10, 661-664. https://doi.org/10.1016/S0960-894X(00)00063-9
  135. Suzuki, H., Shindo, K., Ueno, A., Miura, T., Takei, M., Sakakibara, M., Fukamachi, H., Tanaka, J. and Higa, T. (1999) S1319: A novel ${\beta}2$-adrenoceptor agonist from a marine sponge Dysidea sp. Bioorg. Med. Chem. Lett. 9, 1361-1364. https://doi.org/10.1016/S0960-894X(99)00205-X
  136. Takei, M., Burgoyne, D. L. and Andersen, R. J. (1994) Effect of contignasterol on histamine release induced by anti-immunoglobulin E from rat peritoneal mast cells. J. Pharm. Sci. 83, 1234-1235. https://doi.org/10.1002/jps.2600830909
  137. Tan, P., Luscinskas, F. W. and Homer-Vanniasinkam, S. (1997) Cellular and molecular mechanisms of inflammation and thrombosis. Eur. J. Vasc. Endovasc. Surg. 17, 373-389.
  138. Tasdemir, D., Topaloglu, B., Perozzo, R., Brun, R., O'Neill, R., Carballeira, N. M., Zhang, X., Tonge, P. J., Linden, A. and Ruedi, P. (2007) Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorg. Med. Chem. 15, 6834-6845. https://doi.org/10.1016/j.bmc.2007.07.032
  139. Ter Haar, E., Kowalski, R. J., Hamel, E., Lin, C. M., Longley, R. E., Gunasekera, S. P., Rosenkranz, H. S. and Day, B. W. (1996) Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 35, 243-250. https://doi.org/10.1021/bi9515127
  140. Thomas, T. R., Kavlekar, D. P., and LokaBharathi, P. A. (2010) Marine drugs from sponge-microbe association-a review. Mar. Drugs 8, 1417-1468. https://doi.org/10.3390/md8041417
  141. Torres, Y. R., Berlink, R. G., Nascimento, G. G., Fortier, S. C., Pessoa, C. and de Moraes, M. O. (2002) Antibacterial activity against resistant bacteria and cytotoxicity of four alkaloid toxins isolated from the marine sponge Arenosclera brasiliensis. Toxicon. 40, 885-891. https://doi.org/10.1016/S0041-0101(01)00286-0
  142. Turk, T., Ambrozic Avgustin, J., Batista, U., Strugar, G., Kosmina, R., Civovic, S., Janussen, D., Kauferstein, S., Mebs, D. and Sepcic, K. (2013) Biological activities of ethanolic extracts from deep-sea antarctic marine sponges. Mar. Drugs 11, 1126-1139. https://doi.org/10.3390/md11041126
  143. Urban, S., De Almeida Leone, P., Carroll, A. R., Fechner, G. A., Smith, J., Hooper, J. N. and Quinn, R. J. (1999) Axinellamines A-D, novel imidazo-azolo-imidazole alkaloids from the australian marine sponge Axinella sp. J. Org. Chem. 64, 731-735. https://doi.org/10.1021/jo981034g
  144. Uriz, M. J., Martin, D. and Rosell, D. (1992) Relationships of biological and taxonomic characteristics to chemically mediated bioactivity in Mediterranean littoral sponges. Mar. Biol. 113, 287-297.
  145. Vik, A., Hedner, E., Charnock, C., Tangen, L. W., Samuelsen, O., Larsson, R., Bohlin, L. and Gundersen, L. L. (2007) Antimicrobial and cytotoxic activity of agelasine and agelasimine analogs. Bioorg. Med. Chem. 15, 4016-4037. https://doi.org/10.1016/j.bmc.2007.03.086
  146. Wakimoto, T., Maruyama, A., Matsunaga, S., Fusetani, N., Shinoda, K. and Murphy, P. T. (1999) Octa- and nonaprenylhydroquinone sulfates, inhibitors of a1,3-fucosyltransferase VII, from an Australian marine sponge Sarcotragus sp. Bioorg. Med. Chem. Lett. 9, 727-730. https://doi.org/10.1016/S0960-894X(99)00059-1
  147. Walsh, T. J., Groll, A., Hiemenz, J., Fleming, R., Roilides, E. and Anaissie, E. (2004) Infections due to emerging and uncommon medically important fungal pathogens. Clin. Microbiol. Infect. 10, 48-66. https://doi.org/10.1111/j.1470-9465.2004.00839.x
  148. Walter, S. (2005) Drug discovery: a history. p. 258. Wiley, New York.
  149. Wellington, K. D., Cambie, R. C., Rutledge, P. S. and Bergquist, P. R. (2000) Chemistry of Sponges. 19. Novel Bioactive Metabolites from Hamigeratarangaensis. J. Nat. Prod. 63, 79-85. https://doi.org/10.1021/np9903494
  150. White, D. E. and Fenner, F. J. (1986) Medical Virology. Academic Press., San Diego.
  151. WHO (2015) World Malaria report. World Health Organization, Geneva.
  152. Wiedbrauk, D. L. and Johnston, S. L. G. (1992) Manual of Clinical Virology. Raven Press., New York.
  153. Xue, S., Zhanga, H. T., Wua, P. C., Zhanga, W. and Yuana, Q. (2004) Study on bioactivity of extracts from marine sponges in Chinese Sea. J. Exp. Mar. Biol. Ecol. 298, 71-78. https://doi.org/10.1016/j.jembe.2003.08.004
  154. Yasuhara-Bell, J. and Lu, Y. (2010) Marine compounds and their antiviral activities. Antiviral Res. 86, 231-240. https://doi.org/10.1016/j.antiviral.2010.03.009
  155. Yousaf, M., El Sayed, K. A., Rao, K. V., Lim, C. W., Hu, J. F., Kelly, M., Franzblau, S. G, Zhang, F., Peraud, O., Hill, R. T. and Hamann, M. T. (2002) 12,34-Oxamanzamines, novel biocatalytic and natural products from rnanzamine producing Indo-Pacific sponges. Tetrahedron 58, 7397-7402. https://doi.org/10.1016/S0040-4020(02)00825-6
  156. Zabriskie, T. M., Klocke, J. A., Ireland, C. M., Marcus, A. H., Molinski, T. F., Faulkner, D. J., Xu, C. and Clardy, J. C. (1986) Jaspamide, a modified peptide from a Jaspis sponge, with insecticidal and antifungal activity. J. Am. Chem. Soc. 108, 3123-3124. https://doi.org/10.1021/ja00271a062
  157. Zapolska-Downar, D., Zapolska-Downar, A., Markiewski, M., Ciechanowicz, M., Kaczmarczyk, M. and Naruszewicz, M. (2001) Selective inhibition by procubol of vascular cell adhesion molecule 1(VCAM-1) expression in human vascular endothelial cells. Atherosclerosis 155, 123-130. https://doi.org/10.1016/S0021-9150(00)00553-0

Cited by

  1. Emerging biopharmaceuticals from bioactive peptides derived from marine organisms vol.90, pp.1, 2017, https://doi.org/10.1111/cbdd.12925
  2. Trachycladines and Analogues: Synthesis and Evaluation of Anticancer Activity vol.12, pp.6, 2017, https://doi.org/10.1002/cmdc.201600620
  3. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review vol.92, 2017, https://doi.org/10.1016/j.biopha.2017.05.125
  4. Marine-Derived Pharmaceuticals - Challenges and Opportunities vol.24, pp.6, 2016, https://doi.org/10.4062/biomolther.2016.181
  5. Emerging biopharmaceuticals from marine actinobacteria vol.49, 2017, https://doi.org/10.1016/j.etap.2016.11.015
  6. Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials vol.15, pp.9, 2017, https://doi.org/10.3390/md15090272
  7. Antibacterial activity of the Saudi Red Sea sponges against Gram-positive pathogens 2017, https://doi.org/10.1016/j.jksus.2017.08.009
  8. Marine actinobacteria as a drug treasure house vol.87, 2017, https://doi.org/10.1016/j.biopha.2016.12.086
  9. Pleiotropic Role of Puupehenones in Biomedical Research vol.15, pp.10, 2017, https://doi.org/10.3390/md15100325
  10. Sponges: A Reservoir of Genes Implicated in Human Cancer vol.16, pp.1, 2018, https://doi.org/10.3390/md16010020
  11. Antinociceptive and Anti-inflammatory Activities of Marine Sponges Aplysina Caissara, Haliclona sp. and Dragmacidon Reticulatum vol.61, pp.0, 2018, https://doi.org/10.1590/1678-4324-2018180104
  12. Fatty Acids Pattern from the French Polynesian Monanchora n. sp. Marine Sponge vol.54, pp.6, 2018, https://doi.org/10.1007/s10600-018-2575-9
  13. Characterization of the Jomthonic Acids Biosynthesis Pathway and Isolation of Novel Analogues in Streptomyces caniferus GUA-06-05-006A vol.16, pp.8, 2018, https://doi.org/10.3390/md16080259
  14. Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression vol.16, pp.6, 2018, https://doi.org/10.3390/md16060212
  15. Significance and potential of marine microbial natural bioactive compounds against biofilms/biofouling: necessity for green chemistry vol.6, pp.2167-8359, 2018, https://doi.org/10.7717/peerj.5049
  16. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds vol.17, pp.1, 2019, https://doi.org/10.3390/md17010031
  17. Marine sponges as a powerful tool for trace elements biomonitoring studies in coastal environment vol.131, pp.1, 2018, https://doi.org/10.1016/j.marpolbul.2018.04.073
  18. Oceans as a Source of Immunotherapy vol.17, pp.5, 2016, https://doi.org/10.3390/md17050282
  19. First identification of a fatal fungal infection of the marine sponge Chondrosia reniformis by Aspergillus tubingensis vol.135, pp.3, 2016, https://doi.org/10.3354/dao03397
  20. The Phylum Bryozoa as a Promising Source of Anticancer Drugs vol.17, pp.8, 2016, https://doi.org/10.3390/md17080477
  21. Immunomodulatory Activity of the Marine Sponge, Haliclona ( Soestella ) sp. (Haplosclerida: Chalinidae), from Sri Lanka in Wistar Albino Rats: Immunosuppression and Th1-Skewed Cytokine Response vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7281295
  22. Sponge Density and Distribution Constrained by Fluid Forcing in the Deep Sea vol.7, pp.None, 2020, https://doi.org/10.3389/fmars.2020.00395
  23. Screening Marine Natural Products for New Drug Leads against Trypanosomatids and Malaria vol.18, pp.4, 2016, https://doi.org/10.3390/md18040187
  24. New Cytotoxic Natural Products from the Red Sea Sponge Stylissa carteri vol.18, pp.5, 2020, https://doi.org/10.3390/md18050241
  25. Moving away from traditional antibiotic treatment: can macrocyclic lactones from marine macroalga-associated heterotroph be the alternatives? vol.104, pp.16, 2016, https://doi.org/10.1007/s00253-020-10658-0
  26. p-Terphenyl alcohols from a marine sponge-derived fungus, Aspergillus candidus OUCMDZ-1051 vol.2, pp.3, 2020, https://doi.org/10.1007/s42995-020-00039-x
  27. Diterpenoids isolated from the Samoan marine sponge Chelonaplysilla sp. inhibit Mycobacterium tuberculosis growth vol.73, pp.8, 2020, https://doi.org/10.1038/s41429-020-0315-4
  28. Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta vol.18, pp.10, 2020, https://doi.org/10.3390/md18100493
  29. Natural Compounds as Guides for the Discovery of Drugs Targeting G-Protein-Coupled Receptors vol.25, pp.21, 2016, https://doi.org/10.3390/molecules25215060
  30. Bioactivity and Biotechnological Overview of Naturally Occurring Compounds from the Dinoflagellate Family Symbiodiniaceae: A Systematic Review vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/1983589
  31. Antimicrobial Potential and Phytochemical Screening of Clathria sp. 1 and Tedania (Tedania) stylonychaeta Sponge Crude Extracts Obtained from the South East Coast of South Africa vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/6697944
  32. The Essentials of Marine Biotechnology vol.8, pp.None, 2016, https://doi.org/10.3389/fmars.2021.629629
  33. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.666664
  34. New glucose-6-phosphate dehydrogenase inhibitor from the Red Sea sponge Echinoclathria sp vol.72, pp.None, 2021, https://doi.org/10.1016/j.tetlet.2021.152986
  35. Difficidin class of polyketide antibiotics from marine macroalga-associated Bacillus as promising antibacterial agents vol.105, pp.16, 2016, https://doi.org/10.1007/s00253-021-11390-z
  36. Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks vol.11, pp.8, 2016, https://doi.org/10.3390/life11080807
  37. A Soft Spot for Chemistry-Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution vol.19, pp.8, 2016, https://doi.org/10.3390/md19080448
  38. Lipid polymer hybrid nanocarriers as a combinatory platform for different anti-SARS-CoV-2 drugs supported by computational studies vol.11, pp.46, 2016, https://doi.org/10.1039/d1ra04576h
  39. Marine Brominated Tyrosine Alkaloids as Promising Inhibitors of SARS-CoV-2 vol.26, pp.20, 2016, https://doi.org/10.3390/molecules26206171
  40. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma vol.19, pp.11, 2016, https://doi.org/10.3390/md19110586
  41. Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea vol.19, pp.11, 2016, https://doi.org/10.3390/md19110611
  42. Unravelling the Anti-Inflammatory and Antioxidant Potential of the Marine Sponge Cliona celata from the Portuguese Coastline vol.19, pp.11, 2016, https://doi.org/10.3390/md19110632
  43. Volatile Organic Compounds, Indole, and Biogenic Amines Assessment in Two Mediterranean Irciniidae (Porifera, Demospongiae) vol.19, pp.12, 2021, https://doi.org/10.3390/md19120711
  44. Caralluma tuberculata N.E.Br Manifests Extraction Medium Reliant Disparity in Phytochemical and Pharmacological Analysis vol.26, pp.24, 2016, https://doi.org/10.3390/molecules26247530
  45. Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources vol.14, pp.12, 2021, https://doi.org/10.3390/ph14121329
  46. Antibacterial activity of endosymbiotic fungi isolated from marine sponges collected from Kotok Kecil Island, Seribu Islands, Jakarta vol.948, pp.1, 2021, https://doi.org/10.1088/1755-1315/948/1/012069
  47. Antibacterial activity of endosymbiotic fungi isolated from marine sponges collected from Kotok Kecil Island, Seribu Islands, Jakarta vol.948, pp.1, 2021, https://doi.org/10.1088/1755-1315/948/1/012069
  48. Polyketide-derived macrobrevins from marine macroalga-associated Bacillus amyloliquefaciens as promising antibacterial agents against pathogens causing nosocomial infections vol.193, pp.None, 2016, https://doi.org/10.1016/j.phytochem.2021.112983
  49. Promising antiparasitic agents from marine sponges vol.29, pp.1, 2016, https://doi.org/10.1016/j.sjbs.2021.08.068
  50. In-silico anti-inflammatory potential of guaiane dimers from Xylopia vielana targeting COX-2 vol.40, pp.1, 2022, https://doi.org/10.1080/07391102.2020.1815579
  51. Metataxanomic, bioactivity and microbiome analysis of Red Sea marine sponges from Egypt vol.61, pp.None, 2016, https://doi.org/10.1016/j.margen.2021.100920