• Title/Summary/Keyword: Antibiotic-alternative

Search Result 168, Processing Time 0.034 seconds

Phenol-Rich Compounds Sweet Gel: A Statistically More Effective Antibiotic than Cloxacillin Against Pseudomonas Aeruginosa

  • Dashtdar, Mehrab;Dashtdar, Mohammad Reza;Dashtdar, Babak;Khan, Gazala Afreen;Kardi, Karima
    • Journal of Pharmacopuncture
    • /
    • v.19 no.3
    • /
    • pp.246-252
    • /
    • 2016
  • Objectives: The purpose of this study was to obtain a natural antibiotic from Phenol-rich compounds; for the dressing and the treatment of chronic wounds. Methods: The Phenol-rich compound sweet gel was prepared by blending four natural herbal extracts, Acacia catechu (L.F.), Momia (Shilajit), Castanea sativa, and Ephedra sinica stapf, with combination of a sweet gel medium, including honey, maple saps, Phoenix dactylifera L. (date), pomegranate extract and Azadirachta indica gum as a stabilizer. The combinations were screened by using a well-diffusion assay with cloxacillin as a control. Pseudomonas spp. was tested with our novel antimicrobial compound. The zones of inhibition in agar culture were measured for each individual component and for the compound, and the results were compared with those of the control group which had been treated with cloxacillin. Data were expressed as means ${\pm}$ standard deviations. Quantitative analyses were performed using the paired t-test. Results: The antibiotic effect of the Phenol-rich compound sweet gel was statistically shown to be more significant than that of cloxacillin against Pseudomonas aeruginosa (P < 0.05). Conclusion: Our novel approach to fighting the antibiotic resistance of Pseudomonas proved to be successful. The Phenol-rich compound sweet gel was found to be suitable for use as an alternative medicine and bioactive dressing material, for the treatment of patients with various types of wounds, including burns, venous leg ulcers, ulcers of various etiologies, leg ulcers on the feet of diabetic, unhealed graft sampling sites, abscesses, boils, surgical wounds, necrotic process, post-operative and neonatal wound infection, and should be considered as an alternative to the usual methods of cure.

Public Health Risks: Antibiotic Resistance - Review -

  • Barton, Mary D;Hart, Wendy S
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.3
    • /
    • pp.414-422
    • /
    • 2001
  • Antibiotic resistance in human pathogens is a major public health issue. Some of the resistance problem can be attributed to the transfer of resistant bacteria from animals to people and the transfer of resistance genes from animal pathogens and commensal bacteria to human pathogens. Control measures include improvements in food hygiene to reduce the spread of zoonotic bacteria to people via the food chain. However, to specifically address the issue, the medical profession must control misuse and overuse of antibiotics in hospitals and community practice. In addition, the livestock industries and their advisors must reduce and refine the use of antibiotics in animal production and replace antibiotics with alternative disease control measures as much as possible.

Ventilator-Associated Pneumonia (인공호흡기연관 폐렴)

  • Jeon, Kyeong-Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.70 no.3
    • /
    • pp.191-198
    • /
    • 2011
  • Ventilator-associated pneumonia (VAP) is the most frequent nosocomial infection in the intensive care unit (ICU), with an incidence ranging from 8% to 38%. Patients who acquire VAP have higher mortality rates and longer ICU and hospital stays. Because there are other potential causes of fever, leukocytosis, and pulmonary infiltrates, clinical diagnosis of VAP is overly sensitive. The only alternative approach to the clinical diagnosis of VAP is the Clinical Pulmonary Infection Score (CPIS). Employing quantitative cultures of respiratory secretions in the diagnosis of VAP leads to less antibiotic use and probably to lower mortality. With respect to microbiologic diagnosis, however, it is not clear that the use of invasive sampling using bronchoscopy is associated with better outcomes. Delayed administration of antibiotic therapy is associated with an increased mortality, and inadequate antibiotic therapy is also associated with higher mortality. Therefore, prompt initiation of adequate antibiotic therapy is a cornerstone of the treatment of VAP. The initial antibiotic therapy should be based on the most common organisms in each hospital and the most likely pathogens for that specific patient. When final cultures and susceptibilities are available, de-escalation to less broad spectrum antibiotics should be done. Since clinical improvement usually takes 2 to 3 days, clinical responses to the initial empirical therapy should be evaluated by day 3. A short course of antibiotic therapy appears to be equivalent to a traditional course of more than 14 days, except when treating non-fermenting gram-negative organisms. If patients receive initially adequate antibiotic therapy, efforts should be made to shorten the duration of therapy to as short as 7 days, provided that the etiologic pathogen is not a non-fermenting gram-negative organism.

Salvage of an exposed cranial prosthetic implant using a transposition flap with an indwelling antibiotic irrigation system

  • Hwang, Sung Oh;Chang, Lan Sook
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.1
    • /
    • pp.73-76
    • /
    • 2020
  • Cranial implant removal is recommended if implants become exposed owing to scalp necrosis after cranioplasty. However, it carries the risk of extensive bleeding, and the resultant cranial defects can cause both aesthetic and functional problems. We present a case of a scalp defect exposing a cranial prosthetic implant that was reconstructed with a local flap and salvaged using an indwelling antibiotic irrigation system. A 73-year-old man presented with scalp necrosis after undergoing cranioplasty due to intracranial hemorrhage. The cranial implant was exposed through the scalp defect. Methicillin-resistant Staphylococcus aureus was detected in the culture from the open wound. After debridement of the necrotic tissue and burring of the superficial layer of the implant, a transposition flap was used to cover the defect and an indwelling antibiotic irrigation system was installed. Continuous irrigation with vancomycin was conducted for 5 days, and intravenous vancomycin was continued for 4 weeks. The flap was in good condition at 4 months postoperatively, with no infection. The convex contour of the scalp was well maintained. The patient's neurological status was stable. Exposed cranial implants can be salvaged with continuous antibiotic irrigation as an alternative to implant removal; thus, the risk of bleeding and possible disfigurement may be avoided.

Antimicrobial Peptides (AMPs): Peptide Structure and Mode of Action

  • Park, Yoon-Kyung;Hahm, Kyung-Soo
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.507-516
    • /
    • 2005
  • Antimicrobial peptides (AMPs) have been isolated and characterized from tissues and organisms representing virtually every kingdom and phylum. Their amino acid composition, amphipathicity, cationic charge, and size allow them to attach to and insert into membrane bilayers to form pores by 'barrel-stave', 'carpet' or 'toroidal-pore' mechanisms. Although these models are helpful for defining mechanisms of AMP activity, their relevance to resolving how peptides damage and kill microorganisms still needs to be clarified. Moreover, many AMPs employ sophisticated and dynamic mechanisms of action to carry out their likely roles in antimicrobial host defense. Recently, it has been speculated that transmembrane pore formation is not the only mechanism of microbial killing by AMPs. In fact, several observations suggest that translocated AMPs can alter cytoplasmic membrane septum formation, reduce cell-wall, nucleic acid, and protein synthesis, and inhibit enzymatic activity. In this review, we present the structures of several AMPs as well as models of how AMPs induce pore formation. AMPs have received special attention as a possible alternative way to combat antibiotic-resistant bacterial strains. It may be possible to design synthetic AMPs with enhanced activity for microbial cells, especially those with antibiotic resistance, as well as synergistic effects with conventional antibiotic agents that lack cytotoxic or hemolytic activity.

H2O2 Generating Ability and Multi-Drug Resistance of Lactic Acid Bacteria Required for Long-Term Inpatient Treatment with Antibiotic Resistance

  • Yuk, Young Sam
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.227-239
    • /
    • 2022
  • Purpose: In our study, in order to find lactic acid bacteria (LAB) with multi-drug resistance to antibiotics, we isolated 140 strains from 15 types of kimchi commercially available in Korea and 20 types of Kimchi made at home from January to December in 2016, and investigated their H2O2 generating ability and multi-drug resistance to antibiotics. Methods: In order to observe the H2O2 generation ability of LAB, we performed the experiment with methods such as Rabe, Hillier, and Kang. To test the antibacterial susceptibility of LAB, we used the disc agar diffusion method using MRS agar (Difco, USA) according to the CLSI and WHO test methods. There are 18 types of antibiotic discs used. Results: Out of the total numbers of 140 strains, 6 strains of Ent. Faecium, 25 strains of L. plantarum, 1 strain of L. rhamnosus, 3 strains of L. sakei, 1 strain of L. acidophilus, 1 strains St. thermophilus, and 7 of unidentified strains generated H2O2. The antibiotic susceptibility of Ent. Faecium indicated SXT, OX, NA, and E; and the antibiotic susceptibility of L. plantarum indicated NA; and the antibiotic susceptibility of St. thermophilus indicated NA, CC, RA, CTT, CM, and P ; and the antibiotic susceptibility of L. rhamnosus indicated SXT, VA, NA and CTT; and the antibiotic susceptibility of 6 strains of L. sakei indicated SXT, OX, NOR, NA, CTT and CIP, all indicating antibiotic resistance. In the case of multi-drug resistance to antibiotics for 53 strains of L. antarum, 8-drug resistance was the most common with 25 strains, followed by 7-drug-resistant strains with 18 strains, 9-drug-resistant strains with 4 strains, 6-drug-resistant strains with 3 strains, 5-drug-resistant strains with 2 strains, and 17-drug-resistant strains with 1 strain. In the case of multi-drug resistance to antibiotics for Ent. Faecium 27 strains, 9-drug resistance was most commonly identified as 9 strains, 8-drug resistance was identified as 6 strains, 7- and 11 drug resistances were identified as 4 strains each, and 4- and 6-drug resistances were identified as 1 strain each. Conclusion: Ent. Faecium, L. plantarum, L. rhamnosus, L. sakei, and St. thermophilus, shown to have anantibacterial activity in previous studies on LAB and shown to have and H2O2 generating ability, antibiotic resistance and multi-drug resistance in this study, are expected to be able to play an excellent role for long-term inpatients to use as an alternative to antibiotics and to cope with emerging antibiotic resistance.

Abatement of Methane Production from Ruminants: Trends in the Manipulation of Rumen Fermentation

  • Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.410-416
    • /
    • 2010
  • Methane emitted from ruminant livestock is regarded as a loss of feed energy and also a contributor to global warming. Methane is synthesized in the rumen as one of the hydrogen sink products that are unavoidable for efficient succession of anaerobic microbial fermentation. Various attempts have been made to reduce methane emission, mainly through rumen microbial manipulation, by the use of agents including chemicals, antibiotics and natural products such as oils, fatty acids and plant extracts. A newer approach is the development of vaccines against methanogenic bacteria. While ionophore antibiotics have been widely used due to their efficacy and affordable prices, the use of alternative natural materials is becoming more attractive due to health concerns regarding antibiotics. An important feature of a natural material that constitutes a possible alternative methane inhibitor is that the material does not reduce feed intake or digestibility but does enhance propionate that is the major hydrogen sink alternative to methane. Some implications of these approaches, as well as an introduction to antibiotic-alternative natural materials and novel approaches, are provided.

Potential of fascaplysin and palauolide from Fascaplysinopsis cf reticulata to reduce the risk of bacterial infection in fish farming

  • Mai, Tepoerau;Toullec, Jordan;Wynsberge, Simon Van;Besson, Marc;Soulet, Stephanie;Petek, Sylvain;Aliotti, Emmanuelle;Ekins, Merrick;Hall, Kathryn;Erpenbeck, Dirk;Lecchini, David;Beniddir, Mehdi A.;Saulnier, Denis;Debitus, Cecile
    • Fisheries and Aquatic Sciences
    • /
    • v.22 no.12
    • /
    • pp.30.1-30.11
    • /
    • 2019
  • Marine natural products isolated from the sponge Fascaplysinopsis cf reticulata, in French Polynesia, were investigated as an alternative to antibiotics to control pathogens in aquaculture. The overuse of antibiotics in aquaculture is largely considered to be an environmental pollution, because it supports the transfer of antibiotic resistance genes within the aquatic environment. One environmentally friendly alternative to antibiotics is the use of quorum sensing inhibitors (QSIs). Quorum sensing (QS) is a regulatory mechanism in bacteria which control virulence factors through the secretion of autoinducers (AIs), such as acyl-homoserine lactone (AHL) in gram-negative bacteria. Vibrio harveyi QS is controlled through three parallel pathways: HAI-1, AI-2, and CAI-1. Bioassay-guided purification of F. cf reticulata extract was conducted on two bacterial species, i.e., Tenacibaculum maritimum and V. harveyi for antibiotic and QS inhibition bioactivities. Toxicity bioassay of fractions was also evaluated on the freshwater fish Poecilia reticulata and the marine fish Acanthurus triostegus. Cyclohexanic and dichloromethane fractions of F. cf reticulata exhibited QS inhibition on V. harveyi and antibiotic bioactivities on V. harveyi and T. maritimum, respectively. Palauolide (1) and fascaplysin (2) were purified as major molecules from the cyclohexanic and dichloromethane fractions, respectively. Palauolide inhibited QS of V. harveyi through HAI-1 QS pathway at 50 ㎍ ml-1 (26 μM), while fascaplysin affected the bacterial growth of V. harveyi (50 ㎍ ml-1) and T. maritimum (0.25 ㎍). The toxicity of fascaplysin-enriched fraction (FEF) was evaluated and exhibited a toxic effect against fish at 50 ㎍ ml-1. This study demonstrated for the first time the QSI potential of palauolide (1). Future research may assess the toxicity of both the cyclohexanic fraction of the sponge and palauolide (1) on fish, to confirm their potential as alternative to antibiotics in fish farming.

Protective effect of bacteriophages against Salmonella Typhimurium infection in weaned piglets (이유자돈에서 Salmonella Typhimurium 감염에 대한 박테리오파지의 방어 효능)

  • Kim, Sung-Jae;Kim, Jae-Hoon;Jun, Soo-Yeon;Paik, Hyoung Rok;Han, Jeong-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.1
    • /
    • pp.35-43
    • /
    • 2014
  • Salmonellosis has caused heavy losses in swine industry and implications for public health. Recently, the urgent problem of antibiotic resistance due to multidrug-resistant Salmonella spp. has been on the rise. The use of host-specific bateriophages as a biocontrol is one possible alternative. In this study, clinical signs, growth performance, quantification and detection of antigen, histopathological changes of gastrointestinal tracts were analyzed comparatively in weaned piglets according to administration of bacteriophages and challenge with Salmonella (S.) Typhimurium. Piglets challenged with S. Typhimurium after administered with bacteriophages showed reduced clinical signs, higher growth performance, lower bacterial shedding, lower quantificational value of antigens in intestines, higher V/C ratio and higher the number of goblet cells in intestines than piglets administered without bacteriophage and challenged with S. Typhimurium. These results indicate that feeding contained with bacteriophages has effect to prevent infection of S. Typhimurium in weaned piglets and suggest that a use of bacteriophage can be considered a valid antibiotic alternative.

Screening of Anti-Adhesion Agents for Pathogenic Escherichia coli O157:H7 by Targeting the GrlA Activator

  • Sin Young Hong;Byoung Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.329-338
    • /
    • 2023
  • Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that produces attaching and effacing lesions on the large intestine and causes hemorrhagic colitis. It is primarily transmitted through the consumption of contaminated meat or fresh produce. Similar to other bacterial pathogens, antibiotic resistance is of concern for EHEC. Furthermore, since the production of Shiga toxin by this pathogen is enhanced after antibiotic treatment, alternative agents that control EHEC are necessary. This study aimed to discover alternative treatments that target virulence factors and reduce EHEC toxicity. The locus of enterocyte effacement (LEE) is essential for EHEC attachment to host cells and virulence, and most of the LEE genes are positively regulated by the transcriptional regulator, Ler. GrlA protein, a transcriptional activator of ler, is thus a potential target for virulence inhibitors of EHEC. To identify the GrlA inhibitors, an in vivo high-throughput screening (HTS) system consisting of a GrlA-expressing plasmid and a reporter plasmid was constructed. Since the reporter luminescence gene was fused to the ler promoter, the bioluminescence would decrease if inhibitors affected the GrlA. By screening 8,201 compounds from the Korea Chemical Bank, we identified a novel GrlA inhibitor named Grlactin [3-[(2,4-dichlorophenoxy)methyl]-4-(3-methylbut-2-en-1-yl)-4,5-dihydro-1,2,4-oxadiazol-5-one], which suppresses the expression of LEE genes. Grlactin significantly diminished the adhesion of EHEC strain EDL933 to human epithelial cells without inhibiting bacterial growth. These findings suggest that the developed screening system was effective at identifying GrlA inhibitors, and Grlactin has potential for use as a novel anti-adhesion agent for EHEC while reducing the incidence of resistance.