• Title/Summary/Keyword: Antibacterial study

Search Result 1,679, Processing Time 0.026 seconds

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans (해외 자생식물추출물이 Streptococcus mutans의 세포 성장 및 생물막 형성에 미치는 영향)

  • Moon, Kyung Hoon;Lee, Yun-Chae;Kim, Jeong Nam
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.712-723
    • /
    • 2019
  • Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.

Antimicrobial Effect of Natural Plant Extracts against Periodontopathic Bacteria (치주염 원인균에 대한 천연 식물 추출물의 항균효과)

  • Lee, Seung-Hee;Kim, Min-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.242-255
    • /
    • 2019
  • In this study, we examined the antimicroboal effect against Actinobacillus actinomycetemcomitans and Prevotella intermedia which were the bacteria causing the Periodontopathic by using 34 types of natural plant extracts. Therefore, this study measures growth inhibition activity and Minimum Inhibition Concentration (MIC) of a sample extract with the use of organic solvent extracts in order to analyze the antibacterial effect of natural plant extracts on periodontopathic bacteria. Each of the 34 types of natural plant extracts were extracted by using the ethanol, and subsequently, the size of growth inhibition zone(clear zone, ㎜) of respective extracts were measured through the disk diffusion method. As a result, it was found that the growth inhibitory activity was found for A. actinomycetemcomitans, which is the bacteria causing the Periodontitis, in 13 types of natural plant extracts such as Raphanus sativus, Akebia quinata, Paeonia lactiflora, Belamcanda chinensis, Inula britannics, Houttuynia cordata, Forsythia saxatilis, Gentiana macrophylla, Melia azedarach, Scutellaria baicalensis, Coptis chinensis, Phellodendron amurense, Kalopanax Pictus, etc. In the case of P. intermedia, the growth inhibitory activity was found in 13 types of natural plant extracts such as Raphanus sativus, Angelica acutiloba, Akebia quinata, Belamcanda chinensis, Inula britannics, Houttuynia cordata, Cinnamomum cassia, Aster tataricus, Melia azedarach, Scutellaria baicalensis, Coptis chinensis, Phellodendron amurense, Kalopanax Pictus etc. For A. actinomycetemcomitans, anti-bacterial effect was exhibited in Belamcanda chinensis, Cinnamomum cassia, Kalopanax Pictus, Phellodendron amurense, Coptis chinensis. The Coptis chinensis showed the most excellent growth inhibitory activity in all organic solvent fragment, while P. intermedia showed the growth inhibitory activity in Belamcanda chinensis, Cinnamomum cassia, Meliaazedarach, Phellodendron amurense, and Coptis chinensis.

Efficacy Evaluation of Disinfectant for Reducing Bioaerosols Generated in a Meat Processing Workplace (육가공 작업장에서 발생되는 바이오에어로졸 저감을 위한 살균제 효능 실증 평가)

  • Hwang, Ju-Young;Choi, Won;Kim, Doo-Young;An, Woo-Ju;Lee, Woo-Je;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.2
    • /
    • pp.138-146
    • /
    • 2021
  • Objectives: This study aims to compare and evaluate the reduction efficiency of disinfectants used in the domestic meat processing industry to reduce bioaerosol exposure of meat industry workers and to use this as basic data for establishing work environment management measures. Methods: Thirteen disinfectants sold in South Korea were selected for evaluation and the bacterial reduction effect of the disinfectants was investigated. Bacterial suspension and surface disinfection tests were conducted to compare and analyze the antibacterial strength of the disinfectants. Pork carcasses, cutting boards, benches, and conveyor belts were selected for surface sterilization tests. Results: As a result of the bacterial suspension experiment test, all disinfectants had a bacterial reduction efficiency of more than 86%. Among them, the bacterial reduction efficiency of chlorine disinfectants was 99.93% on average. In the results of the pork carcass surface sterilization test, the rate of reduction of disinfectants made of quaternary ammonium compounds (QACs) was the highest. Tests of plastic cutting boards showed that chlorine disinfectants had the best sterilization effect. Experiments on stainless steel benches showed the best bacterial reduction efficiency for chlorine dioxide and QACs disinfectants. In the conveyor belt made of urethane, QACs disinfectants showed excellent sterilization effects. Conclusions: The study evaluated the disinfection power of disinfectants against bacteria occurring in domestic meat processing plants. All disinfectants were found to be effective in bacterial suspension experiments, and chlorine disinfectants were particularly effective. In surface sterilization experiments, sterilizing agents with QACs as the main ingredient were excellent.

Analysis of Cadaverine and Its Worker Honeybee Venom Content (Apis mellifera L.) (꿀벌(Apis mellifera L.) 일벌독의 생체아민 cadaverine 함량 및 분석법)

  • Choi, Hong Min;Kim, Hyo Young;Kim, Se Gun;Han, Sang Mi
    • Journal of Life Science
    • /
    • v.31 no.2
    • /
    • pp.144-148
    • /
    • 2021
  • This study aimed to analyze the content and composition of a biological amine, cadaverine, isolated from the venom of worker honeybees (Apis mellifera L.). This biological amine―which has diverse functionality, such as anti-inflammatory and antibacterial effects―has not been previously reported in bee venom. An assay completed in 13 minutes was developed for the cadaverine present in the bee venom using an ultra-performance liquid chromatograph and a Halo C18 column with acetonitrile and water as the mobile phase. The specificity, accuracy, and precision of the assay were verified, and the assay was validated. The linearity for cadaverine in the bee venom was R2=0.99 or above, indicating a moderate level. The limit of detection and limit of quantification were both 0.3 ㎍/ml, and the rate of recovery was 97.6%-99.1%. The relative standard deviation (RSD) of the intra-day precision and inter-day precision for cadaverine was 0.25%-0.44% and 0.25%-1.25%, respectively, with an RSD that fell within 5% indicating excellent precision. Through this novel assay, it was found that the mean content of cadaverine was 1.10±0.05 mg/g. Our results indicated that the linearity, limit of detection, limit of quantification, and rate of recovery of the cadaverine assay were of a satisfactory level, and the cadaverine content of the bee venom was ably determined. This study provides basic data on cadaverine in bee venom, which will prove useful in further studies on the bioactivity of this component.

Angiogenesis-inhibiting Effects of Prunus mume Butanol Fractions on Human Umbilical Vein Endothelial Cells (매실 부탄올 분획물에 의한 혈관 신생 억제 효과)

  • Min, Hye-Ji;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.1
    • /
    • pp.59-65
    • /
    • 2021
  • Prunus mume Sieb. et Zucc is distributed throughout Asia and has traditionally been used as medicine and food. P. mume is known to contain large amounts of various organic acids, minerals, and phenol components. To date, the trend of P. mume research has focused only on the effects of antioxidant, anticancer and antibacterial, with only a few studies have focused on angiogenesis. Angiogenesis is a common characteristic of metastatic cancer through which oxygen and nutrients are delivered to the cells and tissues. In the present study, angiogenesis-inhibiting activity was investigated by evaluating the total polyphenol and flavonoid contents of the P. mume butanol fraction (PBF) and their ability to inhibit VEGF-induced human umbilical vein endothelial cells (HUVECs) proliferation, migration, invasion, and capillary formation. The polyphenols (12.81 mg GAE/g) and flavonoids (28.4 mg QE/g) of the PBF exhibited high antioxidant activity. The results of this study showed that PBF did not inhibit the proliferation of HUVECs at concentrations of 25-200 ㎍/ml and did not exhibit toxicity to normal cells. However, PBF inhibited the VEGF-induced mobility, invasion, and capillary formation of HUVECs. These results show that PBF inhibits the angiogenesis of HUVECs induced by VEGF. Therefore, PBF could serve as a therapeutic agent for the inhibition of angiogenesis.

A Study on the Activities of Five Natural Plant Essential Oils on Atopic Dermatitis (자생식물 Essential Oil 5 종의 항 아토피피부염 활성 연구)

  • Jeong, Jeong-Hwa;Nguyen, Thao Kim Nu;Choi, Min-Jin;Nguyen, Ly Thi Huong;Shin, Heung-Mook;Lee, Byung-Wook;Yang, In-Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This study is an experiment to evaluate the anti-atopy efficacy of five kinds of natural plant essential oils; Artemisia annua L. (AA), Citrus junos Sieb. ex TANAKA (CJ), Chrysanthemum boreale Makino (CB), Pinus koraiensis (PK), and Pinus densiflora for. erecta (PD). Through Agar diffusion test, five species of native plant essential oils were treated in a total of four strains, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. In order to invest the anti-inflammatory effect, five kinds of natural plant essential oils were treated in HaCaT cells-induced by TNF-α and IFN-γ (TI). AA, CJ, CB, PK and PD showed antibacterial effects on Candida albicans at a concentration of 10 mg/mL. We also found that the thymus and activation-regulated chemokine (TARC) expression was suppressed in 0.1 ㎍/mL of PK, 1 ㎍/mL of AA, CB, and PK. macrophage-derived chemokine (MDC) expression was suppressed in 1 ㎍/mL of AA and PK. IL-6 expression was suppressed in 0.1, 1 ㎍/mL of AA, PK in HaCaT cells. Hence it suggests that AA, CB, and PK have the anti-inflammatory effects, and it could contribute to atopic dermatitis relief by reducing the infiltration of immune cells to inflamed area.

Comparative Transcriptome Analysis of Zerumbone-Treated Helicobacter pylori (Zerumbone 처리 헬리코박터 파이로리균의 전사체 분석 비교)

  • Woo, Hyun Jun;Yang, Ji Yeong;Kim, Sa-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Helicobacter pylori (H. pylori) establishes infection in the human gastric mucosa for a long time and causes severe gastric diseases such as peptic ulcer and gastric cancer. When H. pylori is exposed to the antibacterial agents or inhibitors, the expression of pathogenic associated genes could be altered. In this study, we analyzed the transcriptional changes of H. pylori genes induced by zerumbone treatment. RNA expression changes were analyzed using next-generation sequencing (NGS), and then reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the results. As a result of NGS analysis, a total of 23 out of 1,632 genes were differentially expressed by zerumbone treatment. RT-PCR confirmed that zerumbone treatment regulated the expression level of 14 genes. Among the genes associated with DNA replication, transcription, virulence factors and T4SS components, 10 genes (dnaE, dnaQ, rpoA, rpoD, secA, flgE, flhA, virB5, virB8 and virB9) were significantly down-regulated and 4 genes (flaA, flaB, virB4 and virD4) were up-regulated. The results of our current study imply that zerumbone might be a potential therapeutic agent for H. pylori infection by regulating factors related to various H. pylori pathogenicity.

Surface Roughness of Dentin and Formation of Early Cariogenic Biofilm after Silver Diamine Fluoride and Potassium Iodide Application (Silver Diamine Fluoride와 요오드화 칼륨 도포 후 상아질 표면 거칠기와 초기 우식원성 세균막 형성)

  • Haeni, Kim;Howon, Park;Juhyun, Lee;Siyoung, Lee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.140-148
    • /
    • 2022
  • This study aimed to evaluate the effect of silver diamine fluoride (SDF) and potassium iodide (KI) on the formation of cariogenic biofilm and surface roughness in vitro. A total of 48 bovine dentin specimens with artificially induced caries were prepared and divided into 3 groups of 16: untreated control, SDF-treated, and SDF-treated followed by KI (SDFKI). Ten specimens from each group were used to observe microbial adhesion. Multispecies cariogenic biofilms including Streptococcus mutans, Lactobacillus casei, and Candida albicans were cultured on the specimens. Microbes were cultured for 24 hours, and the colony-forming unit was calculated. The remaining specimens were observed by atomic force microscope and scanning electron microscope (SEM). The number of bacteria was significantly lower in the SDF and SDFKI groups. KI did not inhibit the antibacterial activity of SDF significantly. SEM images showed particles generated after SDF and SDFKI application were deposited on the dentin, but there was no significant difference in surface roughness between the 3 groups. This study confirmed that SDF and SDFKI application did not have a significant effect on the surface roughness of dentin, but effectively inhibited the formation of the early cariogenic bacterial film after 24 hours compared to the control.

Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro

  • Liang, Xiuli;Zhang, Xiaojun;Lian, Kaiqi;Tian, Xiuhua;Zhang, Mingliang;Wang, Shiqiong;Chen, Cheng;Nie, Cunxi;Pan, Yun;Han, Fangfang;Wei, Zhanyong;Zhang, Wenju
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.80.1-80.13
    • /
    • 2020
  • Background: In suckling piglets, transmissible gastroenteritis virus (TGEV) causes lethal diarrhea accompanied by high infection and mortality rates, leading to considerable economic losses. This study explored methods of preventing or inhibiting their production. Bovine antimicrobial peptide-13 (APB-13) has antibacterial, antiviral, and immune functions. Objectives: This study analyzed the efficacy of APB-13 against TGEV through in vivo and in vitro experiments. Methods: The effects of APB-13 toxicity and virus inhibition rate on swine testicular (ST) cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT). The impact of APB-13 on virus replication was examined through the 50% tissue culture infective dose (TCID50). The mRNA and protein levels were investigated by real-time quantitative polymerase chain reaction and western blot (WB). Tissue sections were used to detect intestinal morphological development. Results: The safe and effective concentration range of APB-13 on ST cells ranged from 0 to 62.5 ㎍/mL, and the highest viral inhibitory rate of APB-13 was 74.1%. The log10TCID50 of 62.5 ㎍/mL APB-13 was 3.63 lower than that of the virus control. The mRNA and protein expression at 62.5 ㎍/mL APB-13 was significantly lower than that of the virus control at 24 hpi. Piglets in the APB-13 group showed significantly lower viral shedding than that in the virus control group, and the pathological tissue sections of the jejunum morphology revealed significant differences between the groups. Conclusions: APB-13 exhibited good antiviral effects on TGEV in vivo and in vitro.

Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler velvet and immune promoting effects

  • Yoo, Jiseon;Lee, Juyeon;Zhang, Ming;Mun, Daye;Kang, Minkyoung;Yun, Bohyun;Kim, Yong-An;Kim, Sooah;Oh, Sangnam
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.166-182
    • /
    • 2022
  • Deer antler velvet is widely used in traditional medicine for its anti-aging, antioxidant, and immunity-enhancing effects. However, few studies have reported on the discovery of probiotic strains for deer antler fermentation to increase functional ingredient absorption. This study evaluated the ability of probiotic lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g., sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler velvet. Seventeen strains of Lactobacillus spp. that were isolated from kimchi and infant feces, including L. sakei, L. rhamnosus, L. brevis, and L. plantarum, and those that improved the life span of Caenorhabditis elegans were selected for evaluation. Of the 17 strains, 2 (L. rhamnosus LFR20-004 and L. sakei LFR20-007) were selected based on data showing that these strains increased both the sialic acid and GABA contents of deer antler extract after fermentation for 2 d and significantly improved the life span of C. elegans. Co-fermentation with both strains further increased the concentrations of sialic acid, GABA, and metabolites such as short-chain fatty acids and amino acids. We evaluated the biological effects of the fermented antler velvet (FAV) on the antibacterial immune response in C. elegans by assessing worm survival after pathogen infection. The survival of the C. elegans conditioned with FAV for 24h was significantly higher compared with that of the control worm group fed only normal feed (non-pathogenic E. coli OP50) exposed to E. coli O157:H7, Salmonella typhi, and Listeria monocytogenes. To evaluate the protective effects of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent was treated to in vitro and in vivo. We found that FAV significantly restored viability of mice splenocytes and immune promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor [TNF]-α) were activated compared to non-fermented deer antlers. This finding indicated the protective effect of FAV against Cy-induced cell death and immunosuppressed mice. Taken together, our study suggests that immune-promoting antler velvet can be produced through fermentation using L. rhamnosus LFR20-004 and L. sakei LFR20-007.