DOI QR코드

DOI QR Code

Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro

  • Liang, Xiuli (College of Animal Science and Technology, Shihezi University) ;
  • Zhang, Xiaojun (Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Henan Provincial Animal Disease Prevention and Control and Nutrition Immunization Academician workstation, Anyang Institute of Technology) ;
  • Lian, Kaiqi (Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Henan Provincial Animal Disease Prevention and Control and Nutrition Immunization Academician workstation, Anyang Institute of Technology) ;
  • Tian, Xiuhua (Anyang County Agricultural and Rural Bureau) ;
  • Zhang, Mingliang (Henan Joint International Research Laboratory of Veterinary Biologics Research and Application, Henan Provincial Animal Disease Prevention and Control and Nutrition Immunization Academician workstation, Anyang Institute of Technology) ;
  • Wang, Shiqiong (College of Animal Husbandry, Henan Agricultural University) ;
  • Chen, Cheng (College of Animal Science and Technology, Shihezi University) ;
  • Nie, Cunxi (College of Animal Science and Technology, Shihezi University) ;
  • Pan, Yun (Henan Yihongshancheng Bio-Tech Co. Ltd) ;
  • Han, Fangfang (College of Animal Husbandry, Henan Agricultural University) ;
  • Wei, Zhanyong (College of Animal Husbandry, Henan Agricultural University) ;
  • Zhang, Wenju (College of Animal Science and Technology, Shihezi University)
  • Received : 2020.03.12
  • Accepted : 2020.08.11
  • Published : 2020.09.30

Abstract

Background: In suckling piglets, transmissible gastroenteritis virus (TGEV) causes lethal diarrhea accompanied by high infection and mortality rates, leading to considerable economic losses. This study explored methods of preventing or inhibiting their production. Bovine antimicrobial peptide-13 (APB-13) has antibacterial, antiviral, and immune functions. Objectives: This study analyzed the efficacy of APB-13 against TGEV through in vivo and in vitro experiments. Methods: The effects of APB-13 toxicity and virus inhibition rate on swine testicular (ST) cells were detected using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT). The impact of APB-13 on virus replication was examined through the 50% tissue culture infective dose (TCID50). The mRNA and protein levels were investigated by real-time quantitative polymerase chain reaction and western blot (WB). Tissue sections were used to detect intestinal morphological development. Results: The safe and effective concentration range of APB-13 on ST cells ranged from 0 to 62.5 ㎍/mL, and the highest viral inhibitory rate of APB-13 was 74.1%. The log10TCID50 of 62.5 ㎍/mL APB-13 was 3.63 lower than that of the virus control. The mRNA and protein expression at 62.5 ㎍/mL APB-13 was significantly lower than that of the virus control at 24 hpi. Piglets in the APB-13 group showed significantly lower viral shedding than that in the virus control group, and the pathological tissue sections of the jejunum morphology revealed significant differences between the groups. Conclusions: APB-13 exhibited good antiviral effects on TGEV in vivo and in vitro.

Keywords

Acknowledgement

This study was supported by funds from the National Key Research and Development Program of China (2017YFD0501003 and 2016YFD0500102).

References

  1. Laude H, Rasschaert D, Delmas B, Godet M, Gelfi J, Charley B. Molecular biology of transmissible gastroenteritis virus. Vet Microbiol. 1990;23(1-4):147-154. https://doi.org/10.1016/0378-1135(90)90144-K
  2. Pineyro PE, Lozada MI, Alarcon LV, Sanguinetti R, Cappuccio JA, Perez EM, et al. First retrospective studies with etiological confirmation of porcine transmissible gastroenteritis virus infection in Argentina. BMC Vet Res. 2018;14(1):292. https://doi.org/10.1186/s12917-018-1615-9
  3. Lai MM, Cavanagh D. The molecular biology of coronaviruses. Adv Virus Res. 1997;48:1-100.
  4. Eleouet JF, Rasschaert D, Lambert P, Levy L, Vende P, Laude H. Complete sequence (20 kilobases) of the polyprotein-encoding gene 1 of transmissible gastroenteritis virus. Virology. 1995;206(2):817-822. https://doi.org/10.1006/viro.1995.1004
  5. Ding L, Huang Y, Du Q, Dong F, Zhao X, Zhang W, et al. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling. Biochem Biophys Res Commun. 2014;445(2):497-503. https://doi.org/10.1016/j.bbrc.2014.02.039
  6. Zhang Q, Xu Y, Chang R, Tong D, Xu X. Transmissible gastroenteritis virus N protein causes endoplasmic reticulum stress, up-regulates interleukin-8 expression and its subcellular localization in the porcine intestinal epithelial cell. Res Vet Sci. 2018;119:109-115. https://doi.org/10.1016/j.rvsc.2018.06.008
  7. Zhu L, Mou C, Yang X, Lin J, Yang Q. Mitophagy in TGEV infection counteracts oxidative stress and apoptosis. Oncotarget. 2016;7(19):27122-27141. https://doi.org/10.18632/oncotarget.8345
  8. Koczulla AR, Bals R. Antimicrobial peptides: current status and therapeutic potential. Drugs. 2003;63(4):389-406. https://doi.org/10.2165/00003495-200363040-00005
  9. Li J, Wang FP, She WM, Yang CQ, Li L, Tu CT, et al. Enhanced high-mobility group box 1 (HMGB1) modulates regulatory T cells (Treg)/T helper 17 (Th17) balance via toll-like receptor (TLR)-4-interleukin (IL)-6 pathway in patients with chronic hepatitis B. J Viral Hepat. 2014;21(2):129-140. https://doi.org/10.1111/jvh.12152
  10. Vilas Boas LC, de Lima LM, Migliolo L, Mendes GD, de Jesus MG, Franco OL, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus. Biopolymers. 2017;108(2):e22871. https://doi.org/10.1002/bip.22871
  11. Boman HG, Wade D, Boman IA, Wahlin B, Merrifield RB. Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett. 1989;259(1):103-106. https://doi.org/10.1016/0014-5793(89)81505-4
  12. Kim JS, Jeong JH, Cho JH, Lee DH, Kim Y. Antimicrobial activity of antimicrobial peptide LPcin-YK3 derived from bovine lactophoricin. J Microbiol Biotechnol. 2018;28(8):1299-1309. https://doi.org/10.4014/jmb.1805.05001
  13. Albar AH, El-Fakharany EM, Almehdar HA, Uversky VN, Redwan EM. In vitro exploration of the anti-HCV potential of the synthetic spacer peptides derived from human, bovine, and camel lactoferrins. Protein Pept Lett. 2017;24(10):909-921.
  14. Arias M, Hilchie AL, Haney EF, Bolscher JG, Hyndman ME, Hancock RE, et al. Anticancer activities of bovine and human lactoferricin-derived peptides. Biochem Cell Biol. 2017;95(1):91-98. https://doi.org/10.1139/bcb-2016-0175
  15. Albiol Matanic VC, Castilla V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int J Antimicrob Agents. 2004;23(4):382-389. https://doi.org/10.1016/j.ijantimicag.2003.07.022
  16. Robinson WE Jr, McDougall B, Tran D, Selsted ME. Anti-HIV-1 activity of indolicidin, an antimicrobial peptide from neutrophils. J Leukoc Biol. 1998;63(1):94-100. https://doi.org/10.1002/jlb.63.1.94
  17. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65(1-2):55-63. https://doi.org/10.1016/0022-1759(83)90303-4
  18. Peck BC, Shanahan MT, Singh AP, Sethupathy P. Gut microbial influences on the mammalian intestinal stem cell niche. Stem Cells Int. 2017;2017:5604727. https://doi.org/10.1155/2017/5604727
  19. Reed LJ, Muench H. A simple method of estimating fifty percent endpoints. Am J Hyg. 1938;27(20):493-497.
  20. Wei Z, Burwinkel M, Palissa C, Ephraim E, Schmidt MF. Antiviral activity of zinc salts against transmissible gastroenteritis virus in vitro. Vet Microbiol. 2012;160(3-4):468-472. https://doi.org/10.1016/j.vetmic.2012.06.019
  21. Hansen GH, Delmas B, Besnardeau L, Vogel LK, Laude H, Sjostrom H, et al. The coronavirus transmissible gastroenteritis virus causes infection after receptor-mediated endocytosis and acid-dependent fusion with an intracellular compartment. J Virol. 1998;72(1):527-534. https://doi.org/10.1128/jvi.72.1.527-534.1998
  22. Dong W, Xie W, Liu Y, Sui B, Zhang H, Liu L, et al. Receptor tyrosine kinase inhibitors block proliferation of TGEV mainly through p38 mitogen-activated protein kinase pathways. Antiviral Res. 2020;173:104651. https://doi.org/10.1016/j.antiviral.2019.104651
  23. Ding Z, An K, Xie L, Wu W, Zhang R, Wang D, et al. Transmissible gastroenteritis virus infection induces NF-κB activation through RLR-mediated signaling. Virology. 2017;507:170-178. https://doi.org/10.1016/j.virol.2017.04.024
  24. Huang HN, Pan CY, Chen JY. Grouper (Epinephelus coioides) antimicrobial peptide epinecidin-1 exhibits antiviral activity against foot-and-mouth disease virus in vitro. Peptides. 2018;106:91-95. https://doi.org/10.1016/j.peptides.2018.07.003
  25. Yao Y, Liu T, Wang X, Zhang D. The contrary effects of Sirt1 on MCF7 cells depend on CD36 expression level. J Surg Res. 2019;238:248-254. https://doi.org/10.1016/j.jss.2019.01.046
  26. Duan L, Chen Q, Duan S. Transcriptional analysis of Chlorella pyrenoidosa exposed to bisphenol A. Int J Environ Res Public Health. 2019;16(8):1374. https://doi.org/10.3390/ijerph16081374
  27. He M, Zhang H, Li Y, Wang G, Tang B, Zhao J, et al. Cathelicidin-derived antimicrobial peptides inhibit zika virus through direct inactivation and interferon pathway. Front Immunol. 2018;9:722. https://doi.org/10.3389/fimmu.2018.00722
  28. Zuniga S, Cruz JL, Sola I, Mateos-Gomez PA, Palacio L, Enjuanes L. Coronavirus nucleocapsid protein facilitates template switching and is required for efficient transcription. J Virol. 2010;84(4):2169-2175. https://doi.org/10.1128/JVI.02011-09
  29. Song Z, Yang Y, Wang L, Wang K, Ran L, Xie Y, et al. EIF4A2 interacts with the membrane protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Res Vet Sci. 2019;123:39-46. https://doi.org/10.1016/j.rvsc.2018.12.005
  30. Chai W, Burwinkel M, Wang Z, Palissa C, Esch B, Twardziok S, et al. Antiviral effects of a probiotic Enterococcus faecium strain against transmissible gastroenteritis coronavirus. Arch Virol. 2013;158(4):799-807. https://doi.org/10.1007/s00705-012-1543-0
  31. Xue M, Fu F, Ma Y, Zhang X, Li L, Feng L, et al. The PERK arm of the unfolded protein response negatively regulates transmissible gastroenteritis virus replication by suppressing protein translation and promoting type I interferon production. J Virol. 2018;92(15):e00431-e18.
  32. Guo L, Yu H, Gu W, Luo X, Li R, Zhang J, et al. Autophagy negatively regulates transmissible gastroenteritis virus replication. Sci Rep. 2016;6(1):23864. https://doi.org/10.1038/srep23864
  33. Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J. 2018;15(1):102. https://doi.org/10.1186/s12985-018-1012-9
  34. Alvarez J, Sarradell J, Morrison R, Perez A. Impact of porcine epidemic diarrhea on performance of growing pigs. PLoS One. 2015;10(3):e0120532. https://doi.org/10.1371/journal.pone.0120532