Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.6.712

Effects of Foreign Plant Extracts on Cell Growth and Biofilm Formation of Streptococcus Mutans  

Moon, Kyung Hoon (Department of Microbiology, College of Natural Sciences, Pusan National University)
Lee, Yun-Chae (Department of Integrated Biological Science, College of Natural Sciences, Pusan National University)
Kim, Jeong Nam (Department of Microbiology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.29, no.6, 2019 , pp. 712-723 More about this Journal
Abstract
Chemically synthesized compounds are widely used in oral hygiene products. However, excessively long-term use of these chemicals can cause undesirable side effects such as bacterial tolerance, allergy, and tooth discoloration. To solve these issues, significant effort is put into the search for natural antibacterial agents. The aim of this study was to assess the extracts of foreign native plants that inhibit the growth and biofilm formation of Streptococcus mutans. Among the 300 foreign plant extracts used in this study, Chesneya nubigena (D. Don) Ali extract had the highest antimicrobial activity relatively against S. mutans with a clear zone of 9 mm when compared to others. This plant extract also showed anti-biofilm activity and bacteriostatic effect (minimal bactericidal concentration [MBC], 1.5 mg/ml). In addition, the plant extracts of 19 species decreased the ability of S. mutans to form biofilm at least a 6-fold in proportion to the tested concentrations. Of particular note, C. nubigena (D. Don) Ali extract was found to inhibit biofilm formation at the lowest concentration tested effectively. Therefore, our results reveal that C. nubigena (D. Don) Ali extract is a potential candidate for the development of antimicrobial substitutes, which might be effective for caries control as well, as demonstrated by its inhibitory effect on the persistence and pathogenesis of S. mutans.
Keywords
Antimicrobial substitutes; biofilm formation; foreign plant extracts; growth; Streptococcus mutans;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yamamoto, H. and Ogawa, T. 2002. Antimicrobial activity of perilla seed polyphenols against oral pathogenic bacteria. Biosci. Biotechnol. Biochem. 66, 921-924.   DOI
2 Yu, H. H., Seo, S. J., Kim, Y. H., Lee, H. S., Kim, K. J., Jeon, B. H. and You, Y. O. 2003. Effect of Asarum sieboldii extracts on the growth, acid production, adhesion, and insoluble glucan synthesis of Streptococcus mutans. J. Physiol. Pathol. Kor. Med. 17, 666-671.
3 Yu, Y. J., Kwak, W. A., Cho, J. G., Chang, H. S., Kwon, H. K., Lee, S. I., Park, Y. S. and Park, J. H. 1996. Effect of grapefruit seed, Cassiae torae Semen and Angelicae gigantis Radix on growth Streptococcus mutans. J. Kor. Acad. Oral Health 20, 107-120.
4 Zhang, M. L., Wen, Z. B., Hao, X. L., Byalt, V. V., Sukhorukov, A. P. and Sanderson, S. C. 2015. Taxonomy, phylogenetics and biogeography of Chesneya (Fabaceae), evidenced from data of three sequences, ITS, trnS-trnG, and rbcL. Biochem. Syst. Ecol. 63, 80-89.   DOI
5 Babaahmady, K. G., Challacombe, S. J., Marsh, P. D. and Newman, H. N. 1998. Ecological study of Streptococcus mutans, Streptococcus sobrinus and Lactobacillus spp. at sub-sites from approximal dental plaque from children. Caries Res. 32, 51-58.   DOI
6 Barnabe, M., Saraceni, C. H., Dutra-Correa, M. and Suffredini, I. B. 2014. The influence of Brazilian plant extracts on Streptococcus mutans biofilm. J. Appl. Oral. Sci. 22, 366-372.   DOI
7 Bidault, P., Chandad, F. and Grenier, D. 2007. Risk of bacterial resistance associated with systemic antibiotic therapy in periodontology. J. Can. Dent. Assoc. 73, 721-725.
8 Choi, E. G. and Lee, H. J. 1994. The effect of a dentifrice containing several herb medicine of plaque and gingivitis. J. Kor. Acad. Oral Health 18, 401-409.
9 Dai, D. S., Liu, X., Yang, Y., Luo, X. M., Tang, R. X., Yin, Z. C. and Ren, H. Q. 2015. Protective effect of Salvia Przewalskii extract on puromycin-induced podocyte injury. Am. J. Nephrol. 42, 216-227.   DOI
10 Coudron, P. E. and Stratton, C. W. 1995. Use of time-kill methodology to assess antimicrobial combinations against metronidazole-susceptible and metronidazole-resistant strains of Helicobacter pylori. Antimicrob. Agents. Chemother. 39, 2641-2644.   DOI
11 Do, D. S., Min, B. S. and Bae, G. H. 1996. Isolation of the antibacterial constituents from Crassirhizomae rhizoma and evaluation of activity. J. Pharm. Sci. 40, 478-481.
12 Garcia-Godoy, F. and Hicks, M. J. 2008. Maintaining the integrity of the enamel surface: the role of dental biofilm, saliva and preventive agents in enamel demineralization and remineralization. J. Am. Dent. Assoc. 139 Suppl, 25S-34S.   DOI
13 Dong, H., Geng, Y., Wang, X., Song, X., Wang, X. and Yu, J. 2018. Chemical constituents from Scindapsus officinalis (Roxb.) Schott. and their anti(-)inflammatory activities. Molecules 23, 2577.   DOI
14 Dorman, H. J. and Deans, S. G. 2000. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol. 88, 308-316.   DOI
15 Eskandarian, T., Motamedifar, M. P., Arasteh, S. Eghbali, S., Adib, A. and Abdoli, Z. 2017. Comparison of antimicrobial effects of titanium tetrafluoride, chlorhexidine, xylitol and sodium fluoride on Streptococcus mutans: An in vitro study. Electron. Physician 9, 4042-4047.   DOI
16 Gjermo, P., Rolla, G. and Arskaug, L. 1973. Effect on dental plaque formation and some in vitro properties of 12 bisbiguanides. J. Periodontal. Res. Suppl. 12, 81-92.   DOI
17 Hasan, S., Danishuddin, M. and Khan, A. U. 2015. Inhibitory effect of zingiber officinale towards Streptococcus mutans virulence and caries development: in vitro and in vivo studies. BMC Microbiol. 15, 1.   DOI
18 Jang, G. H., Ahn, B. Y., Oh, S. H., Choi, D. S. and Kwon, Y. J. 2000. Anticariogenic effects of Coptis chinensis Franch extract. Kor. J. Food. Sci. Technol. 32, 1396-1402.
19 He, Z. D., Ma, C. Y., Zhang, H. J., Tan, G. T., Tamez, P., Sydara, K., Bouamanivong, S., Southavong, B., Soejarto, D. D., Pezzuto, J. M. and Fong, H. H. 2005. Antimalarial constituents from Nauclea orientalis (L.) L. Chem. Biodivers. 2, 1378-1386.   DOI
20 Jain, I., Jain, P., Bisht, D., Sharma, A., Srivastava, B. and Gupta, N. 2015. Comparative evaluation of antibacterial efficacy of six Indian plant extracts against Streptococcus mutans. J. Clin. Diagn. Res. 9, ZC50-ZC53.
21 Kalemba, D. and Kunicka, A. 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813-29.   DOI
22 Kim, T. I., Yeom, H. R., Ryu, I. C., Bae, K. H. and Chung, C. P. 1996. Clinical and microbiological study on the effect of Magnoliae cortex and Ginkgo biloba extracts containing dentifrice in gingivitis. J. Periodontal. Implant. Sci. 26, 140-154
23 Koga, T., Asakawa, H., Okahashi, N. and Hamada, S. 1986. Sucrose-dependent cell adherence and cariogenicity of serotype c Streptococcus mutans. J. Gen. Microbiol. 132, 2873-2883.
24 Li, J. T., Dong, J. E., Liang, Z. S., Shu, Z. M. and Wan, G. W. 2008. Distributional difference of fat-soluble compounds in the roots, stems and leaves of four Salvia plants. Fen Zi Xi Bao Sheng Wu Xue Bao 41, 44-52.
25 Loesche, W. J. 1986. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 50, 353-380.   DOI
26 Loo, C. Y., Corliss, D. A. and Ganeshkumar, N. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182, 1374-1382.   DOI
27 Marsh, P. D. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149, 279-294.   DOI
28 Mitchell, T. J. 2003. The pathogenesis of streptococcal infections: from tooth decay to meningitis. Nat. Rev. Microbiol. 1, 219-230.   DOI
29 Mei, M. L., Chu, C. H., Low, K. H., Che, C. M. and Lo, E. C. 2013. Caries arresting effect of silver diamine fluoride on dentine carious lesion with S. mutans and L. acidophilus dual-species cariogenic biofilm. Med. Oral. Patol. Oral. Cir. Bucal. 18, e824-e831.
30 Milgrom, P., Ly, K. A., Roberts, M. C., Rothen, M., Mueller, G. and Yamaguchi, D. K. 2006. Mutans streptococci dose response to xylitol chewing gum. J. Dent. Res. 85, 177-181.   DOI
31 O'Toole, G. A. 2011. Microtiter dish biofilm formation assay. J. Vis. Exp. 47, 2437
32 Pham, H. N. T., Sakoff, J. A., Bond, D. R., Vuong, Q. V., Bowyer, M. C. and Scarlett, C. J. 2018. In vitro antibacterial and anticancer properties of Helicteres hirsuta Lour. leaf and stem extracts and their fractions. Mol. Biol. Rep. 45, 2125-2133.   DOI
33 Sakanaka, S., Kim, M., Taniguchi, M. and Yamamoto, T. 1989. Antibacterial substances in Japanese green tea extract against Streptococcus mutans, a cariogenic bacterium. Agric. Biol. Chem. 53, 2307-2311.   DOI
34 Skala, E., Kalemba, D., Wajs, A., Rozalski, M., Krajewska, U., Rozalska, B., Wieckowska-Szakiel, M. and Wysokinska, H. 2007. In vitro propagation and chemical and biological studies of the essential oil of Salvia przewalskii Maxim. Z. Naturforsch. C. 62, 839-848.   DOI
35 Wiwattanarattanabut, K., Choonharuangdej, S. and Srithavaj, T. 2017. In vitro anti-cariogenic plaque effects of essential oils extracted from culinary herbs. J. Clin. Diagn. Res. 11, DC30-DC35.
36 Stewart, P. S. and Costerton, J. W. 2001. Antibiotic resistance of bacteria in biofilms. Lancet 358, 135-138.   DOI
37 Tanzer, J. M. 1995. Dental caries is a transmissible infectious disease: the Keyes and Fitzgerald revolution. J. Dent. Res. 74, 1536-1542.   DOI