DOI QR코드

DOI QR Code

Comparative Transcriptome Analysis of Zerumbone-Treated Helicobacter pylori

Zerumbone 처리 헬리코박터 파이로리균의 전사체 분석 비교

  • Woo, Hyun Jun (Department of Clinical Laboratory Science, Semyung University) ;
  • Yang, Ji Yeong (Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA)) ;
  • Kim, Sa-Hyun (Department of Clinical Laboratory Science, Semyung University)
  • 우현준 (세명대학교 임상병리학과) ;
  • 양지영 (농촌진흥청 기능성작물부) ;
  • 김사현 (세명대학교 임상병리학과)
  • Received : 2022.02.19
  • Accepted : 2022.06.07
  • Published : 2022.06.28

Abstract

Helicobacter pylori (H. pylori) establishes infection in the human gastric mucosa for a long time and causes severe gastric diseases such as peptic ulcer and gastric cancer. When H. pylori is exposed to the antibacterial agents or inhibitors, the expression of pathogenic associated genes could be altered. In this study, we analyzed the transcriptional changes of H. pylori genes induced by zerumbone treatment. RNA expression changes were analyzed using next-generation sequencing (NGS), and then reverse transcription-polymerase chain reaction (RT-PCR) was performed to verify the results. As a result of NGS analysis, a total of 23 out of 1,632 genes were differentially expressed by zerumbone treatment. RT-PCR confirmed that zerumbone treatment regulated the expression level of 14 genes. Among the genes associated with DNA replication, transcription, virulence factors and T4SS components, 10 genes (dnaE, dnaQ, rpoA, rpoD, secA, flgE, flhA, virB5, virB8 and virB9) were significantly down-regulated and 4 genes (flaA, flaB, virB4 and virD4) were up-regulated. The results of our current study imply that zerumbone might be a potential therapeutic agent for H. pylori infection by regulating factors related to various H. pylori pathogenicity.

본 연구에서는 제럼본에 처리에 의해 유도된 H. pylori 유전자의 전사적 변화를 분석하였다. NGS를 사용하여 RNA 발현 변화를 분석한 다음 그 결과를 검증하기 위해 RT-PCR을 수행하였다. NGS 분석 결과, 1,632개의 유전자 중 총 23개가 제럼본 처리에 의해 유의하게 발현이 변화된 특이발현 유전자로 분석되었다. DNA 복제와 전사, 병원성 인자 및 T4SS 성분과 관련된 유전자 중 10개는 현저하게 하향 조절되었고 5개는 상향 조절되었다. RT-PCR을 이용하여 유전자의 발현 수준을 재확인하였고 그 결과, 14개 유전자에서 NGS와 동일하게 발현 양상이 변화하였다. RT-PCR은 제럼본 처리에 의해 10개의 유전자(dnaE, dnaQ, rpoA, rpoD, secA, flgE, flhA, virB5, virB8, virB9)의 발현 감소와 4개의 유전자(flaA, flaB, virB4, virD4)의 발현 증가를 보였다. 이러한 본 연구의 결과는 제럼본이 다양한 H. pylori의 병원성과 관련된 인자들을 조절함으로써 H. pylori 감염의 잠재적인 치료제가 될 수 있음을 시사한다.

Keywords

Acknowledgement

This paper was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Sciences and ICT) (No. 2019R1G1A1100451).

References

  1. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol. 13: 607-615. https://doi.org/10.1016/S1470-2045(12)70137-7
  2. Marshall BJ, Warren JR. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315. https://doi.org/10.1016/S0140-6736(84)91816-6
  3. Warren JR, Marshall B. 1983. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1: 1273-1275.
  4. Amieva M, Peek RM, Jr. 2016. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150: 64-78. https://doi.org/10.1053/j.gastro.2015.09.004
  5. Salama NR, Hartung ML, Muller A. 2013. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11: 385-399. https://doi.org/10.1038/nrmicro3016
  6. Wang F, Meng W, Wang B, Qiao L. 2014. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345: 196-202. https://doi.org/10.1016/j.canlet.2013.08.016
  7. 1994. Schistosomes, liver flukes and Helicobacter pylori. IARC working group on the evaluation of carcinogenic risks to humans. lyon, 7-14 June 1994. IARC Monogr. Eval. Carcinog. Risks Hum. 61: 1-241.
  8. Vilaichone RK, Mahachai V, Shiota S, Uchida T, Ratanachu-ek T, Tshering L, et al. 2013. Extremely high prevalence of Helicobacter pylori infection in bhutan. World J. Gastroenterol. 19: 2806-2810. https://doi.org/10.3748/wjg.v19.i18.2806
  9. Kalantari K, Moniri M, Boroumand Moghaddam A, Abdul Rahim R, Bin Ariff A, Izadiyan Z, et al. 2017. A review of the biomedical applications of zerumbone and the techniques for its extraction from ginger rhizomes. Molecules 22: 1645. https://doi.org/10.3390/molecules22101645
  10. Ohnishi K, Irie K, Murakami A. 2009. In vitro covalent binding proteins of zerumbone, a chemopreventive food factor. Biosci. Biotechnol. Biochem. 73: 1905-1907. https://doi.org/10.1271/bbb.90265
  11. Girisa S, Shabnam B, Monisha J, Fan L, Halim CE, Arfuso F, et al. 2019. Potential of zerumbone as an anti-cancer agent. Molecules 24: 734. https://doi.org/10.3390/molecules24040734
  12. Rosa A, Caprioglio D, Isola R, Nieddu M, Appendino G, Falchi AM. 2019. Dietary zerumbone from shampoo ginger: new insights into its antioxidant and anticancer activity. Food Funct. 10: 1629-1642. https://doi.org/10.1039/c8fo02395f
  13. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al. 2010. Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice. Fitoterapia 81: 855-858. https://doi.org/10.1016/j.fitote.2010.05.009
  14. Vishwanatha H, Babu PN, Gowrishankar B, Shridhar S. 2012. Antimicrobial activity of zerumbone from zingiber zurumbet against Staphylococcus epidermidis and Aspergillus spp. Int. J. Appl. Biol. Pharm. 3: 40-43.
  15. Sidahmed HMA, Hashim NM, Abdulla MA, Ali HM, Mohan S, Abdelwahab SI, et al. 2015. Antisecretory, gastroprotective, antioxidant and anti-Helicobcter pylori activity of zerumbone from Zingiber zerumbet (L.) Smith. PLoS One 10: e0121060. https://doi.org/10.1371/journal.pone.0121060
  16. Kim S-H. 2018. Comparative proteome analysis of zerumbone-treated Helicobacter pylori. Korean J. Clin. Lab. Sci. 50: 275-283. https://doi.org/10.15324/kjcls.2018.50.3.275
  17. Woo HJ, Yang JY, Lee P, Kim JB, Kim SH. 2021. Zerumbone inhibits Helicobacter pylori urease activity. Molecules 26: 2663. https://doi.org/10.3390/molecules26092663
  18. Choe D, Palsson B, Cho BK. 2020. STATR: A simple analysis pipeline of Ribo-Seq in bacteria. J. Microbiol. 58: 217-226. https://doi.org/10.1007/s12275-020-9536-2
  19. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. 2010. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28: 511-515. https://doi.org/10.1038/nbt.1621
  20. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562-578. https://doi.org/10.1038/nprot.2012.016
  21. Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc.: Series B (Methodological) 57: 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  22. Campbell EA, Korzheva N, Mustaev A, Murakami K, Nair S, Goldfarb A, et al. 2001. Structural mechanism for rifampicin inhibition of bacterial rna polymerase. Cell 104: 901-912. https://doi.org/10.1016/S0092-8674(01)00286-0
  23. Dailidiene D, Tan S, Ogura K, Zhang M, Lee AH, Severinov K, et al. 2007. Urea sensitization caused by separation of Helicobacter pylori RNA polymerase beta and beta' subunits. Helicobacter 12: 103-111. https://doi.org/10.1111/j.1523-5378.2007.00479.x
  24. Nitharwal RG, Verma V, Dasgupta S, Dhar SK. 2011. Helicobacter pylori chromosomal DNA replication: current status and future perspectives. FEBS Lett. 585: 7-17. https://doi.org/10.1016/j.febslet.2010.11.018
  25. Goh KL, Chan WK, Shiota S, Yamaoka Y. 2011. Epidemiology of Helicobacter pylori infection and public health implications. Helicobacter 16 Suppl 1: 1-9.
  26. Boquet P, Ricci V. 2012. Intoxication strategy of Helicobacter pylori VacA toxin. Trends Microbiol. 20: 165-174. https://doi.org/10.1016/j.tim.2012.01.008
  27. Fan E, Chauhan N, Udatha DB, Leo JC, Linke D. 2016. Type V secretion systems in bacteria. Microbiol. Spectr. 4. doi: 10.1128/microbiolspec.VMBF-0009-2015.
  28. Allan E, Dorrell N, Foynes S, Anyim M, Wren BW. 2000. Mutational analysis of genes encoding the early flagellar components of Helicobacter pylori: evidence for transcriptional regulation of flagellin A biosynthesis. J. Bacteriol. 182: 5274-5277. https://doi.org/10.1128/JB.182.18.5274-5277.2000
  29. Schirm M, Soo EC, Aubry AJ, Austin J, Thibault P, Logan SM. 2003. Structural, genetic and functional characterization of the flagellin glycosylation process in Helicobacter pylori. Mol. Microbiol. 48: 1579-1592. https://doi.org/10.1046/j.1365-2958.2003.03527.x
  30. Tsang J, Hoover TR. 2015. Basal body structures differentially affect transcription of RpoN- and FliA-dependent flagellar genes in Helicobacter pylori. J. Bacteriol. 197: 1921-1930. https://doi.org/10.1128/JB.02533-14
  31. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, et al. 2007. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449: 862-866. https://doi.org/10.1038/nature06187
  32. Merino E, Flores-Encarnacion M, Aguilar-Gutierrez GR. 2017. Functional interaction and structural characteristics of unique components of Helicobacter pylori T4SS. FEBS J. 284: 3540-3549. https://doi.org/10.1111/febs.14092
  33. Terradot L, Waksman G. 2011. Architecture of the Helicobacter pylori cag-type IV secretion system. FEBS J. 278: 1213-1222. https://doi.org/10.1111/j.1742-4658.2011.08037.x
  34. Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C, Vauterin M, et al. 2010. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 6: e1001069. https://doi.org/10.1371/journal.pgen.1001069
  35. Woo HJ, Yang JY, Kwon HJ, Kim HW, Kim S-H, Kim J-B. 2021. Comparative transcriptome analysis of caryophyllene-treated Helicobacter pylori. Microbiol. Biotechnol. Lett. 49: 440-448.
  36. Woo HJ, Yang JY, Lee MH, Kim HW, Kwon HJ, Park M, et al. 2020. Inhibitory effects of β-caryophyllene on Helicobacter pylori infection in vitro and in vivo. Int. J. Mol. Sci. 21: 1008. https://doi.org/10.3390/ijms21031008
  37. Kwon HJ, Lee MH, Kim HW, Yang JY, Woo HJ, Park M, et al. 2020. Riboflavin inhibits growth of Helicobacter pylori by down-regulation of polA and dnaB genes. Biomed. Sci. Lett. 26: 288-295. https://doi.org/10.15616/BSL.2020.26.4.288
  38. Tharmalingam N, Kim SH, Park M, Woo HJ, Kim HW, Yang JY, et al. 2014. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agent Cancer. 9: 43. https://doi.org/10.1186/1750-9378-9-43
  39. Boonjakuakul JK, Canfield DR, Solnick JV. 2005. Comparison of Helicobacter pylori virulence gene expression in vitro and in the rhesus macaque. Infect. Immun. 73: 4895-4904. https://doi.org/10.1128/IAI.73.8.4895-4904.2005
  40. Niehues M, Stark T, Keller D, Hofmann T, Hensel A. 2011. Antiadhesion as a functional concept for prevention of pathogens: N-Phenylpropenoyl-L-amino acid amides as inhibitors of the Helicobacter pylori BabA outer membrane protein. Mol. Nutr. Food Res. 55: 1104-1117. https://doi.org/10.1002/mnfr.201000548
  41. Kim SH, Park M, Woo H, Tharmalingam N, Lee G, Rhee KJ, et al. 2012. Inhibitory effects of anthocyanins on secretion of Helicobacter pylori CagA and VacA toxins. Int. J. Med. Sci. 9: 838-842. https://doi.org/10.7150/ijms.5094
  42. Kim SH, Lee MH, Park M, Woo HJ, Kim YS, Tharmalingam N, et al. 2018. Regulatory effects of black rice extract on Helicobacter pylori infection-induced apoptosis. Mol. Nutr Food Res. 62: 1700586. https://doi.org/10.1002/mnfr.201700586
  43. Lee MH Woo HJ, Park M, Moon C, Eom YB, Kim SH, Kim JB. 2016. Plumbagin inhibits expression of virulence factors and growth of Helicobacter pylori. Microbiol. Biotechnol. Lett. 44: 218-226. https://doi.org/10.4014/mbl.1603.03002