• Title/Summary/Keyword: Antibacterial Peptides

Search Result 81, Processing Time 0.031 seconds

Synthesis and Antibiotic Activities of CRAMP, a Cathelin-related Antimicrobial Peptide and Its Fragments

  • 하종명;신송엽;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1073-1077
    • /
    • 1999
  • CRAMP, a 37-amino acid cationic antimicrobial peptide was recently deduced from the cDNA cloned from mouse femoral marrow RNA. In order to investigate the structure-activity relationship and functional region of CRAMP, CRAMP and its 18-mer overlapping peptides were synthesized by the solid phase method. CRAMP showed broad spectrum antibacterial activity against both Gram-positive and Gram-negative bacterial strains (MIC: 3.125-6.25 μM) but had no hemolytic activity until 50 μM. CRAMP was found to have a potent anticancer activity (IC50: 12-23 μM) against two human small cell lung cancer cell lines. Furthermore, CRAMP was found to display faster bactericidal rate in B. subtilis rather than E. coli in the kinetics of bacterial killing. Among 18-meric overlapping fragment peptides, only CRAMP (16-33) displayed potent antibacterial activity (MIC: 12.5-50 μM) against several bacteria with no hemolytic activity. Circular dichroism (CD) spectra anal-ysis indicated that CRAMP and its analogues will form the amphipathic α-helical conformation in the cell membranes similar to other antimicrobial peptides, such as cecropins and magainins.

Asterias pectinifera-Derived Collagen Peptides Mixed with Halocynthia roretzi Extracts Exhibit Anti-Photoaging Activities during Exposure to UV Irradiation, and Antibacterial Properties

  • Soo-Jin Oh;Ji-Ye Park;Bada Won;Yong-Taek Oh;Seung-Chan Yang;Ok Sarah Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1382-1389
    • /
    • 2022
  • Asterias pectinifera, a species of starfish and cause of concern in the aquaculture industry, was recently identified as a source of non-toxic and highly water-soluble collagen peptides. In this study, we investigated the antioxidant and anti-photoaging functions of compounds formulated using collagen peptides from extracts of Asterias pectinifera and Halocynthia roretzi (AH). Our results showed that AH compounds have various skin protective functions, including antioxidant effects, determined by measuring the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl radicals, as well as anti-melanogenic effects, determined by measuring tyrosinase inhibition activity. To determine whether ethosome-encapsulated AH compounds (E(AH)) exert ultraviolet (UV)-protective effects, human dermal fibroblasts or keratinocytes were incubated with E(AH) before and after exposure to UVA or UVB. E(AH) treatment led to inhibition of photoaging-induced secretion of matrix metalloproteinase-1 and interleukin-6 and -8, which are associated with inflammatory responses during UV irradiation. Finally, the antibacterial effects of AH and E(AH) were confirmed against both gram-negative and gram-positive bacteria. Our results indicate that E(AH) has the potential for use in the development of cosmetics with a range of skin protective functions.

Antimicrobial Cyclic Peptides for Plant Disease Control

  • Lee, Dong Wan;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.

Production of Bioactive Peptides from Milk (우유에서 생리활성 펩타이드의 생산)

  • Seol, Kuk-Hwan;Chang, Oun-Ki;Kim, Min-Kyung;Han, Gi-Sung;Jeong, Seok-Geun;Park, Beom-Young;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Milk-derived bioactive peptides have been found to exhibit various physiological activities such as angiotensin-converting enzyme (ACE) inhibitory, antibacterial, and antioxidative effects. Bioactive peptides can be used in the formulation of functional foods, nutraceuticals, and natural drugs because of their beneficial effects. However, the degree of variability in the composition, functionality, and sensory properties of such peptides has greatly limited their use in the food industry. In this review, we discuss the main peptides obtained from milk proteins and summarize findings from previous studies on the production and biological activities of these peptides. In addition, we compare the methods used to separate and identify the structure of the bioactive peptides and highlight current investigations into engineering and implementation of technologies that would allow more efficient isolation of bioactive peptides for functional food production. To improve human health, further molecular biology studies will also be required to elucidate the complex network of interactions between food microorganisms and the digestive system.

  • PDF

Bioenvironmental Interaction of Toxic Peptide Hornet Venom with Phospholipid (Hornet 독액의 독성 Peptide와 Phospholipid 간의 생체환경적 상호작용)

  • 김광호;이봉헌
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.189-194
    • /
    • 1997
  • Toxic peptides from hornet venom, mastoparan and mastoparan-B were synthesized us- ing the solid phase peptide synthesis method and investigated the interaction of them with phospholipid bilayer, antibacterial activity, and hemolytic activity. Both toxic peptides could induce dye release at a low concentration in neutral liposome. The binding affinity of mastoparan-B for neutral liposome was smaller than that for acidic one. Mastoparan and mastoparan-B had strong antibacterial activity for gram-positive bacteria, but weak or potent activity for gram-negative ones, respectively. Mastoparan and mastoparan-B lysed erythrocyte very little up to 5 $\mu$M.

  • PDF

Structure-antibiotic activity of cecropin A(1-8)-magainin 2(1-12), cecropin A(1-8)-melittin(1-12) hybrid peptides and their analogues studied by NMR spectroscopy

  • Donghoon Oh;Songyub Shin;Joohyun Kang;Hahm, Kyung-soo;Kim, Killyong;Kim, Yangmee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.32-32
    • /
    • 1999
  • Cecropin A(1-8)-magainin 2(1-12) and cecropm A(1-8)-melittin(1-12) hybrid peptides were known to have potent antitumor and antibacterial activity. In particular, cecropm A(l-8)-magainin 2(1-12) has powerful antibacterial and antitumor activity with no hemolytic effect.(omitted)

  • PDF

Expression of Antibacterial Cationic Peptides from Methylotrophic Yeast, Pichia pastoris

  • Lee, Gang-U;Choe, Yun-Jae
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.669-671
    • /
    • 2000
  • Antimicrobial cationic peptides have attracted increasing research and clinical interest as a natural antibiotics due to their broad spectrum of antimicrobial activites and the rapid development of multidrug-resistant pathogenic microorganisms. In this study, first, we synthesized artificial fusion partner and cationic peptide genes (lactoferricin, magainin, protegrin-1, and indolicidin). Second, we constructed recombinant expression vectors and then transformed Pichia pastoris. Finally, expressed cationic peptides were purified and tested for their antimicrobial activites. Antimicrobial activity has been tested upon the appearance of clearing zone on the plate with the lawn of gram negative E.coli XL- I blue and garm positive Staphylococcus aureus. Protegrin-1 and Indolicidin have apparant activity of cationic peotides. This fusion technique may lead to a general and suitable tool for production of pure antimicrobial cationic peptides in Pichia pastoris.

  • PDF

Variation of Antimicrobial Peptide in the Extract of the Hard-shelled Mussel Mytilus coruscus Depending on Boiling (가열 유무에 따른 참담치(Mytilus coruscus) 추출물 내의 항균 펩타이드 변화)

  • Lee, Ji-Eun;Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.6
    • /
    • pp.875-885
    • /
    • 2022
  • This study was performed to confirm the optimal extraction method for antimicrobial peptides from the Hard-shelled mussel. Extractions were performed with two processes including 1% HAc/boiling and 1% HAc/non-boiling methods and used extracts for the comparison of the antimicrobial activity, protease stability, action mechanism, AU-PAGE (acid-urea PAGE), and HPLC chromatograms. 1% HAc/boiling extract showed potent antibacterial activities both against Gram-positive and negative bacterium but 1% HAc/non-boiling extract showed antibacterial activity only against Gram-positive bacteria. Treatment of 1% HAc/boiling extract with proteases retained almost antibacterial activity against B. subtilis, but abolished significant antibacterial activity against E. coli D31. Only 1% HAc/boiling extract showed two discrete clearing antibacterial zones including slow migrating and rapid migrating zones. Both extracts showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. In comparison of the chromatogram obtained from C18 or cation-exchange HPLC, the eluted peaks from 1% HAc/boiling extract showed high hydrophobic property or absorbance compared to 1% HAc/non-boiling extract, respectively. The concentration of the purified antimicrobial peptide was also higher in 1% HAc/boiling extract than in 1% HAc/non-boiling extract. Our results suggest that the effective extraction condition for antimicrobial peptides from marine invertebrate is boiling process in a weak acetic acid solution (1%).