Browse > Article
http://dx.doi.org/10.5657/KFAS.2022.0875

Variation of Antimicrobial Peptide in the Extract of the Hard-shelled Mussel Mytilus coruscus Depending on Boiling  

Lee, Ji-Eun (Department of Food Science and Biotechnology, Kunsan National University)
Seo, Jung-Kil (Department of Food Science and Biotechnology, Kunsan National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.55, no.6, 2022 , pp. 875-885 More about this Journal
Abstract
This study was performed to confirm the optimal extraction method for antimicrobial peptides from the Hard-shelled mussel. Extractions were performed with two processes including 1% HAc/boiling and 1% HAc/non-boiling methods and used extracts for the comparison of the antimicrobial activity, protease stability, action mechanism, AU-PAGE (acid-urea PAGE), and HPLC chromatograms. 1% HAc/boiling extract showed potent antibacterial activities both against Gram-positive and negative bacterium but 1% HAc/non-boiling extract showed antibacterial activity only against Gram-positive bacteria. Treatment of 1% HAc/boiling extract with proteases retained almost antibacterial activity against B. subtilis, but abolished significant antibacterial activity against E. coli D31. Only 1% HAc/boiling extract showed two discrete clearing antibacterial zones including slow migrating and rapid migrating zones. Both extracts showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. In comparison of the chromatogram obtained from C18 or cation-exchange HPLC, the eluted peaks from 1% HAc/boiling extract showed high hydrophobic property or absorbance compared to 1% HAc/non-boiling extract, respectively. The concentration of the purified antimicrobial peptide was also higher in 1% HAc/boiling extract than in 1% HAc/non-boiling extract. Our results suggest that the effective extraction condition for antimicrobial peptides from marine invertebrate is boiling process in a weak acetic acid solution (1%).
Keywords
Hard-shelled mussel; Mytilus coruscus; Antimicrobial peptide; Extraction method; Boiling;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Lehrer RI, Rosenman M, Harwig SSL, Jackson R and Eisenhaur P. 1991. Ultrasensitive assay for endogenous antimicrobial polypeptides. J Immunol Methods 137, 167-173. https://doi.org/10.1016/0022-1759(91)90021-7.   DOI
2 Menzel LP, Lee IH, Sjostrand B and Lehrer RI. 2002. Immunolocalization of clavanins in Styela clava hemocytes. Dev Comp Immunol 26, 505-515. https://doi.org/10.1016/s0145-305x(02)00010-1.   DOI
3 Oh R, Lee MJ, Kim YO, Nam BH, Kong HJ, Kim JW, Park JY, Seo JK and Kim DG. 2018. Purification and characterization of an antimicrobial peptide myitichitin-chitin binding domain from the hard-shelled mussel, Mytilus coruscus. Fish Shellfish Immunol 83, 425-435. https://doi.org/10.1016/j.fsi.2018.09.009.   DOI
4 Seo JK. 2016. Screening and purification of an antimicrobial peptide from the gill of the Manila clam Ruditapes philippinarum. Korean J Fish Aquat Sci 49, 137-145. https://doi.org/10.5657/KFAS.2016.0137.   DOI
5 Skerlavaj B, Romeo D and Gennaro R. 1990. Rapid membrane permeabilization and inhibition of vital functions of Gramnegative bacteria by bactenecins. Infect Immun 58, 3724-3730. https://doi.org/10.1128/IAI.58.11.3724-3730.1990.   DOI
6 Chernysh S, Gordya N and Suborova T. 2015. Insect antimicrobial peptide complexes prevent resistance development in bacteria. PLoS One 10, e0130788. https://doi.org/10.1371/journal.pone.0130788.   DOI
7 Hancock RE and Chapple DS. 1999. Peptide antibiotics. Antimicrob Agents Chemother 43, 1317-1323. https://doi.org/10.1128/AAC.43.6.1317.   DOI
8 Hsu CH, Chen C, Jou ML, Lee AYL, Lin YC, Yu YP, Huang WT and Wu SH. 2005. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin, evidence for multiple conformations involved in binding to membranes and DNA. Nucleic Acids Res 33, 4053-4064. https://doi.org/10.1093/nar/gki725.   DOI
9 Charlet M, Chernysh S, Philippe H, Hetru C, Hoffmann JA and Bulet P. 1996. Innate immunity: Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis. J Biol Chem 271, 21808-21813. https://doi.org/10.1074/jbc.271.36.21808.   DOI
10 Shai Y. 2002. Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236-248. https://doi.org/10.1002/bip.10260.   DOI
11 Sperstad SV, Haug T, Blencke HM, Styrvold OB, Li C and Stensvag K. 2011. Antimicrobial peptides from marine invertebrates: Challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 29, 519-530. https://doi.org/10.1016/j.biotechadv.2011.05.021.   DOI
12 De Zoysa M, Nikapitiya C, Whang I, Lee JS and Lee J. 2009. Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol 27, 639-646. https://doi.org/10.1016/j.fsi.2009.08.007.   DOI
13 van't Hof W, Veerman EC, Helmerhorst EJ and Amerongen AV. 2001. Antimicrobial peptides: Properties and applicability. Biol Chem 382, 597-619. https://doi.org/10.1515/BC.2001.072.   DOI
14 Wu R, Patocka J, Nepovimova E, Oleksak P, Valis M, Wu W and Kuca K. 2021. Marine invertebrate peptides: Antimicrobial peptides. Front Microbiol 12, 785085. https://doi.org/10.3389/fmicb.2021.785085.   DOI
15 Ammerman JW, Fuhrman JA, Hagstrom A and Azam F. 1984. Bacterioplankton growth in seawater. 1. Growth kinetics and cellular characteristics in seawater cultures. Mar Ecol Prog Ser 18, 31-39. https://doi.org/10.3354/meps018031.   DOI
16 Nakamura T, Furunaka H, Miyata T, Tokunaga F, Muta T, Iwanaga S, Niwa M, Takao T and Shimonishi Y. 1988. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J Biol Chem 263, 16709-16713. https://doi.org/10.1016/S0021-9258(18)37448-9.   DOI
17 Silphaduang U and Noga EJ. 2001. Peptide antibiotics in mast cell of fish. Nature 414, 268-269. https://doi.org/10.1038/35104690.   DOI
18 Tincu JA and Taylor SW. 2004. Antimicrobial peptides from marine invertebrates. Antimicrob Agents Chemother 48, 3645-3654. https://doi.org/10.1128/AAC.48.10.3645-3654.2004.   DOI
19 Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395. https://doi.org/10.1038/415389a.   DOI
20 Seo JK, Crawford JM, Stone KL and Noga EJ. 2005. Purification of a novel arthropod defensin from the American oyster, Crassostrea virginica. Biochem Biophys Res Commun 338, 1998-2004. https://doi.org/10.1016/j.bbrc.2005.11.013.   DOI
21 Elnagdy S and AlKhazindar M. 2022. Using clustered regularly interspaced short palindromic repeats for recombinant biosynthesis of antimicrobial peptides as anti-COVID-19 agent. ACS Pharmacol Trans Sci 5, 177-178. https://doi.org/10.1021/acsptsci.1c00252.   DOI
22 Hancock RE and Scott MG. 2000. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 97, 8856-8861. https://doi.org/10.1073/pnas.97.16.8856.   DOI
23 Izadpanah A and Gallo RL. 2005. Antimicrobial peptides. J Am Acad Dermatol 52, 381-390. https://doi.org/10.1016/j.jaad.2004.08.026.   DOI
24 Khoo L, Robinette DW and Noga EJ. 1999. Callinectin, an antibacterial peptide from blue crab, Callinectes sapidus, hemocytes. Mar Biotechnol 1, 44-51. https://doi.org/10.1007/pl00011750.   DOI
25 Haug T, Kjuul AK, Stensvag K, Sandsdalen E and Styrvold OB. 2002. Antibacterial activity in four marine crustacean decapods. Fish Shellfish Immunol 12, 371-85. https://doi.org/10.1006/fsim.2001.0378.   DOI
26 Hultmart D, Engstrom A, Bennich H, Kapur R and Boman H. 1982. Insect immunity: Isolation and structure of cecropin D and four minor antimicrobial components from Cecropia pupae. Eur J Biochem 127, 207-217. https://doi.org/10.1111/j.1432-1033.1982.tb06857.x.   DOI
27 Huo L, Zhang K, Ling J, Peng Z, Huang X, Liu H and Gu L. 2011. Antimicrobial and DNA-binding activity of the peptide fragments of human lactoferrin and histatin 5 against Streptococcus mutans. Arch Oral Biol 56, 869-876. https://doi.org/10.1016/j.archoralbio.2011.02.004.   DOI
28 Miyata T, Tokunaga F, Yoneya T, Yoshikawa K, Iwanaga S, Niwa M, Takao T and Shimonishi Y. 1989. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: Chemical Structures and Biological Activity. J Biochem 106, 663-668. https://doi.org/10.1093/oxfordjournals.jbchem.a122913.   DOI
29 Seo JK, Stephenson J, Crawford JM, Stone KL and Noga ED. 2010. American oyster, Crassostrea virginica, expresses a potent antibacterial histone H2B protein. Mar Biotechnol 12, 543-551. https://doi.org/10.1007/s10126-009-9240-z.   DOI
30 Lee JE and Seo JK. 2021. Screening and purification of a novel antibacterial peptide, cgCAFLP, against skin pathogens from the extract of the Pacific oyster Crassostrea gigas from Buan in Korea. Korean J Fish Aquat Sci 54, 927-937. https://doi.org/10.5657/KFAS.2021.0927.   DOI