Browse > Article
http://dx.doi.org/10.4014/jmb.2207.07018

Asterias pectinifera-Derived Collagen Peptides Mixed with Halocynthia roretzi Extracts Exhibit Anti-Photoaging Activities during Exposure to UV Irradiation, and Antibacterial Properties  

Soo-Jin Oh (BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital)
Ji-Ye Park (BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital)
Bada Won (R&D Center, Star's Tech Co., Ltd.)
Yong-Taek Oh (R&D Center, Star's Tech Co., Ltd.)
Seung-Chan Yang (R&D Center, Star's Tech Co., Ltd.)
Ok Sarah Shin (BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital)
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.11, 2022 , pp. 1382-1389 More about this Journal
Abstract
Asterias pectinifera, a species of starfish and cause of concern in the aquaculture industry, was recently identified as a source of non-toxic and highly water-soluble collagen peptides. In this study, we investigated the antioxidant and anti-photoaging functions of compounds formulated using collagen peptides from extracts of Asterias pectinifera and Halocynthia roretzi (AH). Our results showed that AH compounds have various skin protective functions, including antioxidant effects, determined by measuring the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl radicals, as well as anti-melanogenic effects, determined by measuring tyrosinase inhibition activity. To determine whether ethosome-encapsulated AH compounds (E(AH)) exert ultraviolet (UV)-protective effects, human dermal fibroblasts or keratinocytes were incubated with E(AH) before and after exposure to UVA or UVB. E(AH) treatment led to inhibition of photoaging-induced secretion of matrix metalloproteinase-1 and interleukin-6 and -8, which are associated with inflammatory responses during UV irradiation. Finally, the antibacterial effects of AH and E(AH) were confirmed against both gram-negative and gram-positive bacteria. Our results indicate that E(AH) has the potential for use in the development of cosmetics with a range of skin protective functions.
Keywords
Asterias pectinifera-derived collagen peptides mixed with Halocynthia roretzi extracts (AH); Ethosome-encapsulated AH (E(AH)); antioxidant; anti-photoaging; anti-inflammatory; antibacterial;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Monmai C, Go SH, Shin IS, You S, Kim D-O, Kang S, et al. 2018. Anti-inflammatory effect of asterias amurensis fatty acids through NF-kB and MAPK pathways against LPS-stimulated RAW264.7 cells. J. Microbiol. Biotechnol. 28: 1635-1644.   DOI
2 Lee CC, Hsieh HJ, Hsieh C-H, Hwang DF. 2014. Antioxidative and anticancer activities of various ethanolic extract fractions from crown-of-thorns starfish (Acanthaster planci). Environ. Toxicol. Pharmacol. 38: 761-73.   DOI
3 Zhang W, Wang J, Jin W, Zhang Q. 2013. The antioxidant activities and neuroprotective effect of polyAHccharides from the starfish Asterias rollestoni. Carbohydr. Polym. 95: 9-15.   DOI
4 Jeong MH, Yang KM, Kim JK, Nam BH, Kim GY, Lee SW, et al. 2013. Inhibitory effects of Asterina pectinifera extracts on melanin biosynthesis through tyrosinase activity. Int. J. Mol. Med. 31: 205-212.   DOI
5 Thao NP, Cuong NX, Luyen BTT, Quang TH, Hanh TTH, Kim S, et al. 2013. Anti-inflammatory components of the starfish Astropecten polyacanthus. Mar. Drugs 11: 2917-2926.   DOI
6 Han SB, Won B, Yang SC, Kim DH. 2021. Asterias pectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. J. Ind. Eng. Chem. 98: 289-297.   DOI
7 Cuadrado A, Garcia-Fernandez L, Gonzalez L, Suarez Y, Losada A, Alcaide V, et al. 2003. AplidinTM induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J. Biol. Chem. 278: 241-250.   DOI
8 Gunasinghe MA, AT Kim, SM Kim. 2019. Inhibitory effects of vanadium-binding proteins purified from the sea squirt Halocynthia roretzi on adipogenesis in 3T3-L1 adipocytes. Appl. Biochem. Biotechnol. 189: 49-64.   DOI
9 Gunasinghe M. and SM Kim. 2018. Antioxidant and antidiabetic activities of vanadium binding proteins purified from the Halocynthia roretzi. J. Food Sci. Technol. 55: 1840-1849.   DOI
10 Kim AT and Kim DO. 2019. Anti-inflammatory effects of vanadium-binding protein from Halocynthia roretzi in LPS-stimulated RAW264. 7 macrophages through NF-κB and MAPK pathways. Int. J. Biol. Macromol. 133: 732-738.   DOI
11 Oh Y, Shim KB, Ahn CB, Kim SS, Je JY. 2019. Halocynthia roretzi (Halocynthia roretzi) hydrolyAHtes induce apoptosis in human colon cancer HT-29 cells through activation of reactive oxygen species. Nutr. Cancer 71: 118-127.   DOI
12 Park JH, Seo BY, Lee SC, Park E. 2010. Effects of ethanol extracts from stalked Halocynthia roretzi (Styela clava) on antioxidant potential, oxidative DNA damage and DNA repair. Food Sci. Biotechnol. 19: 1035-1040.   DOI
13 White KM, Rosales R, Yildiz S, Kehrer T, Miorin L, Moreno E, et al. 2021. Plitidepsin has potent preclinical efficacy against AHRSCoV-2 by targeting the host protein eEF1A. Science 371: 926-931.   DOI
14 Jang WS, Kim KN, Lee YS, Nam MH, Lee IH. 2002. Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Lett. 521: 81-86.   DOI
15 Gilchrest BA. 2013. Photoaging. J. Investig. Dermatol. 133: E2-6.   DOI
16 Oh S-J, JK Lee, OS Shin. 2019. Aging and the immune system: the impact of immunosenescence on viral infection, immunity and vaccine immunogenicity. Immune Netw. 19: e37.
17 Lee JK, Oh SJ, Gim JA, Shin OS. 2022. miR-10a, miR-30c, and miR-451a encapsulated in small extracellular vesicles are pro-senescence factors in human dermal fibroblasts. J. Invest. Dermatol. 142: 2570-2579.e6.   DOI
18 Seo SW, Park SK, Oh SJ, Shin OS. 2018. TLR4-mediated activation of the ERK pathway following UVA irradiation contributes to increased cytokine and MMP expression in senescent human dermal fibroblasts. PLoS One 13: e0202323.
19 Collado M, Blasco MA, Serrano M. 2007. Cellular senescence in cancer and aging. Cell 130: 223-233.   DOI
20 Ghosh K, BC Capell. 2016. The senescence-associated secretory phenotype: critical effector in skin cancer and aging. J. Investig. Dermatol. 136: 2133-2139.   DOI
21 Wikler M, F Cockerill, W Craig. 2006. Performance standards for antimicrobial disc susceptibility tests; Standards.
22 D'Mello SAN, Finlay GJ, Baguley BC, Askarian-Amiri ME. 2016. Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17: 1144.
23 Slominski A, Tobin DJ, Shibahara S, Wortsman J. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84: 1155-1228.   DOI
24 Qian W, Liu W, Zhu D, Cao Y, Tang A, Gong G, et al. 2020. Natural skin-whitening compounds for the treatment of melanogenesis. Exp. Ther. Med. 20: 173-185.   DOI
25 Pillaiyar T, Namasivayam V, Manickam M, Jung SH. 2018. Inhibitors of melanogenesis: an updated review. J. Med. Chem. 61: 7395-7418.   DOI
26 Burrage PS, Mix KS, Brinckerhoff CE. 2006. Matrix metalloproteinases: role in arthritis. Front. Biosci. 11: 529-543.   DOI
27 Lambert JD, Elias RJ. T 2010. he antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch. Biochem. Biophys. 501: 65-72.   DOI
28 Bigelow R, Cardelli J. 2006. The green tea catechins,(-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene 25: 1922-1930.   DOI
29 Singh D, Srivastava Sk, Chaudhuri Tk, Upadhyay G. 2015. Multifaceted role of matrix metalloproteinases (MMPs). Front. Mol. Biosci. 2: 19.
30 Catho G, Martischang R, Boroli F, Chraiti MN, Martin Y, Tomsuk ZK, et al. 2021. Outbreak of Pseudomonas aerugino producing VIM carbapenemase in an intensive care unit and its termination by implementation of waterless patient care. Crit. Care 25: 301.
31 Enright MC, Robinson DA, Randle G, Feil EJ, Grundmann H, Spratt B. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRAH). Proc. Natl. Acad. Sci. USA 99: 7687-7692.   DOI
32 Monmai C, Go SH, Shin I-S, You SG, Lee H, Kang SB, et al. 2018. Immune-enhancement and anti-inflammatory activities of fatty acids extracted from Halocynthia aurantium tunic in RAW264. 7 cells. Mar. Drugs 16: 309.
33 Kim SS, Ahn CB, Moon SE, Je JY. 2018. Purification and antioxidant activities of peptides from Halocynthia roretzi (Halocynthia roretzi) protein hydrolyAHtes using pepsin hydrolysis. Food Biosci. 25: 128-133.   DOI
34 Delgado-Calle J, Kurihara N, Atkinson EG, Nelson J, Miyagawa K, Galmarini CM, et al. 2019. Aplidin (plitidepsin) is a novel anti-myeloma agent with potent anti-resorptive activity mediated by direct effects on osteoclasts. Oncotarget 10: 2709-2721.   DOI
35 O'Neill P. 1989. Structure and mechanics of starfish body wall. J. Exp. Biol. 147: 53-89.   DOI
36 Gomes NGM, Valentao PB, Pereira RB. 2020. Plitidepsin to treat multiple myeloma. Drugs Today (Barc) 56: 337-347.   DOI
37 LoAHda A, Munoz-Alonso MJ, Garcia C, Sanchez-Murcia PA, Martinzw-L JF, Dominguez JM, et al. 2016. Translation elongation factor eEF1A2 is a novel anticancer target for the marine natural product plitidepsin. Sci. Rep. 6: 35100.
38 Blowes LM, Egertova M, Liu Y, Davis GR, Terrill NJ, Gupta HS, et al. 2017. Body wall structure in the starfish Asteriasrubens. J. Anat. 231: 325-341.   DOI
39 Eylers JP. 1976. Aspects of skeletal mechanics of the starfish Asterias forbesii. J. Morphol. 149: 353-367.   DOI
40 Park S.-H, Song T, Bae TS, Khang G, Choi BH, Park SR, et al. 2012. Comparative analysis of collagens extracted from different animal sources for application of cartilage tissue engineering. Int. J. Precis. Eng. Manufact. 13: 2059-2066.   DOI
41 Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S. 2003. Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. Int. J. Biol. Macromol. 32: 199-204.   DOI
42 Sun L, Hou H, Li B, Zhang Y. 2017. Characterization of acid-and pepsin-soluble collagen extracted from the skin of Nile tilapia (Oreochromis niloticus). Int. J. Biol. Macromol. 99: 8-14.   DOI
43 Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. 2015. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6: 286.
44 Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. 2013. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 8: 102.
45 ElAHyed MM, Abdallah OY, Naggar VF, Khalafallah NM. 2006. Deformable liposomes and ethosomes: mechanism of enhanced skin delivery. Int. J. Pharm. 322: 60-66.   DOI
46 Zylberberg C, S Matosevic. 2016. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 23: 3319-3329.   DOI
47 Paiva-AHntos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, et al. 2021. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res. 38: 947-970.   DOI
48 Nasr S, Rady M, Gomaa I, Syrovets T, Simmet T, Fayad W, et al. 2019. Ethosomes and lipid-coated chitoAHn nanocarriers for skin delivery of a chlorophyll derivative: a potential treatment of squamous cell carcinoma by photodynamic therapy. Int. J. Pharm. 568: 118528.
49 Bellefroid C, Lechanteur A, Evrard B, Mottet D, Debacq-Chainiaux F, Piei G. 2019. In vitro skin penetration enhancement techniques: a combined approach of ethosomes and microneedles. Int. J. Pharm. 572: 118793.
50 Shen LN, Zhang YT, Wang Q, Xu L, Feng NP. 2014. Enhanced in vitro and in vivo skin deposition of apigenin delivered using ethosomes. Int. J. Pharm. 460: 280-288.   DOI
51 Van Tran V, JY Moon, YC Lee. 2019. Liposomes for delivery of antioxidants in cosmeceuticals: challenges and development strategies. J. Control. Release 300: 114-140.   DOI
52 Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler JR VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661.   DOI
53 Dayan GH, Mohamed N, Scully IL, Cooper D, Begier E, Eiden J, et al. 2016. Staphylococcus aureus: the current state of disease, pathophysiology and strategies for prevention. Expert Rev. Vccines 15: 1373-1392.   DOI
54 Choi EJ, Kim HI, Kim JA, Jun SY, Kang SH, Park DJ, et al. 2015. The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSAH) and methicillin-resistant S. aureus (MRAH). Appl. Microbiol. Biotechnol. 99: 4387-4396.   DOI
55 Peterson LR, DM Schora. 2016. Methicillin-resistant Staphylococcus aureus control in the 21st century: laboratory involvement affecting disease impact and economic benefit from large population studies. J. Clin. Microbiol. 54: 2647-2654.   DOI