Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.08.2014.0074

Antimicrobial Cyclic Peptides for Plant Disease Control  

Lee, Dong Wan (Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University)
Kim, Beom Seok (Plant Pharmacology Laboratory, Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University)
Publication Information
The Plant Pathology Journal / v.31, no.1, 2015 , pp. 1-11 More about this Journal
Abstract
Antimicrobial cyclic peptides derived from microbes bind stably with target sites, have a tolerance to hydrolysis by proteases, and a favorable degradability under field conditions, which make them an attractive proposition for use as agricultural fungicides. Antimicrobial cyclic peptides are classified according to the types of bonds within the ring structure; homodetic, heterodetic, and complex cyclic peptides, which in turn reflect diverse physicochemical features. Most antimicrobial cyclic peptides affect the integrity of the cell envelope. This is achieved through direct interaction with the cell membrane or disturbance of the cell wall and membrane component biosynthesis such as chitin, glucan, and sphingolipid. These are specific and selective targets providing reliable activity and safety for non-target organisms. Synthetic cyclic peptides produced through combinatorial chemistry offer an alternative approach to develop antimicrobials for agricultural uses. Those synthesized so far have been studied for antibacterial activity, however, the recent advancements in powerful technologies now promise to provide novel antimicrobial cyclic peptides that are yet to be discovered from natural resources.
Keywords
antimicrobial peptides; cyclic peptides; fungal diseases; plant disease control;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Akpa, E., Jacques, P., Wathelet, B., Paquot, M., Fuchs, R., Budzikiewicz, H. and Thonart, P. 2001. Influence of culture conditions on lipopeptide production by Bacillus subtilis. Appl. Biochem. Biotechnol. 91:551-561.
2 Andreu, D., Merrifield, R., Steiner, H. and Boman, H. 1983. Solid-phase synthesis of cecropin A and related peptides. Proc. Natl. Acad. Sci. U.S.A. 80:6475-6479.   DOI
3 Arellano, M., Duran, A. and Perez, P. 1996. Rho 1 GTPase activates the (1-3) beta-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. Eur. Mol. Biol. Organ. J. 15:4584.
4 Asaka, O. and Shoda, M. 1996. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085.
5 Bassarello, C., Lazzaroni, S., Bifulco, G., Cantore, P. L., Iacobellis, N. S., Riccio, R., Gomez-Paloma, L. and Evidente, A. 2004. Tolaasins A-E, five new lipodepsipeptides produced by Pseudomonas tolaasii. J. Nat. Prod. 67:811-816.   DOI   ScienceOn
6 Bockus, A. T., McEwen, C. M. and Lokey, R. S. 2013. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr. Top. Med. Chem. 13:821-836.   DOI
7 Boger, D. L., Keim, H., Oberhauser, B., Schreiner, E. P. and Foster, C. A. 1999. Total synthesis of HUN-7293. J. Am. Chem. Soc. 121:6197-6205.   DOI   ScienceOn
8 Bulawa, C. E. 1993. Genetics and molecular biology of chitin synthesis in fungi. Annu. Rev. Microbiol. 47: 505-534.   DOI   ScienceOn
9 Burr, T., Matteson, M., Smith, C., Corral-Garcia, M. and Huang, T.-C. 1996. Effectiveness of bacteria and yeasts from apple orchards as biological control agents of apple scab. Biol. Control 6:151-157.   DOI   ScienceOn
10 De Lucca, A. J. and Walsh, T. J. 1999. Antifungal peptides: novel therapeutic compounds against emerging pathogens. Antimicrob. Agents Chemother. 43:1-11.
11 de Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A. and Raaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69:7161-7172.   DOI
12 Debono, M. and Gordee, R. S. 1994. Antibiotics that inhibit fungal cell wall development. Annu. Rev. Microbiol. 48:471-497.   DOI   ScienceOn
13 Diederich, F., Stang, P. J. and Tykwinski, R. R. 2008. Modern supramolecular chemistry: strategies for macrocycle synthesis. John Wiley & Sons.
14 Edman, P. 1959. Chemistry of amino acids and peptides. Annu. Rev. Biochem. 28:69-96.   DOI   ScienceOn
15 Edwards, S. and Seddon, B. 2001. Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. J. Appl. Microbiol. 91:652-659.   DOI   ScienceOn
16 Georgopapadakou, N. 1992. Emerging Targets in Antibacterial and Antifungal Chemotherapy. Champman and Hall, London and New York, pp. 476-494.
17 Georgopapadakou, N. H. and Tkacz, J. S. 1995. The fungal cell wall as a drug target. Trends Microbiol. 3:98-104.   DOI   ScienceOn
18 Gooday, G. 1977. Biosynthesis of the Fungal Wall-Mechanisms and Implications The First Fleming Lecture. J. Gen. Microbiol. 99:1-11.   DOI
19 Gozalbo, D., Elorza, M. V., Sanjuan, R., Marcilla, A., Valentin, E. and Sentandreu, R. 1993. Critical steps in fungal cell wall synthesis: strategies for their inhibition. Pharmacol. Ther. 60:337-345.   DOI   ScienceOn
20 Grgurina, I., Bensaci, M., Pocsfalvi, G., Mannina, L., Cruciani, O., Fiore, A., Fogliano, V., Sorensen, K. N. and Takemoto, J. Y. 2005. Novel cyclic lipodepsipeptide from Pseudomonas syringae pv. lachrymans strain 508 and syringopeptin antimicrobial activities. Antimicrob. Agents Chemother. 49:5037-5045.   DOI   ScienceOn
21 Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., Himmelsbach, D. S., Crumley, F. G. and Cutler, H. G. 1988. Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J. Agric. Food Chem. 36:366-370.   DOI
22 Han, J. H., Hwang, I. C., Cho, S. H., Jang, C., Kim, N. G., Yu, S. H., Yu, Y. M. and Kim, S. B. 2008. Description of Streptomyces neopeptinius sp. nov., an actinobacterium with broad spectrum antifungal activities. J. Microbiol. 46:295-299.   DOI   ScienceOn
23 Hartland, R., Emerson, G. and Sullivan, P. 1991. A secreted ${\beta}$-glucan-branching enzyme from Candida albicans. Proc. R. Soc. London, B 246:155-160.   DOI   ScienceOn
24 Heins, S. D., Jimenez, D. R., Manker, D. C., Marrone, P. G., McCoy, R. J. and Orjala, J. E. 2000. Strain of bacillus for controlling plant diseases and corn rootworm. US Patent 6060051 A.
25 Heisey, R. M., Huang, J., Mishra, S. K., Keller, J. E., Miller, J. R., Putnam, A. R. and D'Silva, T. D. 1988. Production of valinomycin, an insecticidal antibiotic, by Streptomyces griseus var. flexipertum var. nov. J. Agric. Food Chem. 36:1283-1286.   DOI
26 Horton, D. A., Bourne, G. T. and Smythe, M. L. 2002. Exploring privileged structures: the combinatorial synthesis of cyclic peptides. J. Comput.-Aided Mol. Des. 16:415-431.   DOI   ScienceOn
27 Ishidoh, K.-I., Kinoshita, H., Igarashi, Y., Ihara, F. and Nihira, T. 2014. Cyclic lipodepsipeptides verlamelin A and B, isolated from entomopathogenic fungus Lecanicillium sp. J. Antibiot. 67:1-5.   DOI   ScienceOn
28 Hur, G. H., Vickery, C. R. and Burkart, M. D. 2012. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat. Prod. Rep. 29:1074-1098.   DOI   ScienceOn
29 Ikai, K., Shiomi, K., Takesako, K., Mizutani, S., Yamamoto, J., Ogawa, Y., Ueno, M. and Kato, I. 1991a. Structures of aureobasidins B to R. J. Antibiot. 44:1187-1198.   DOI
30 Ikai, K., Takesako, K., Shiomi, K., Moriguchi, M., Umeda, Y., Yamamoto, J., Kato, I. and Naganawa, H. 1991b. Structure of aureobasidin A. J. Antibiot. 44:925-933.   DOI
31 Isono, K. and Suzuki, S. 1979. Polyoxins-pyrimidine nucleoside peptide antibiotics inhibiting fungal cell-wall biosynthesis. Heterocycles 13:333-351.   DOI
32 Joo, S. H. 2012. Cyclic Peptides as Therapeutic Agents and Biochemical Tools. Biomol. Ther. 20:19.   DOI   ScienceOn
33 Kajimura, Y. and Kaneda, M. 1997. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot. 50:220-228.   DOI
34 Kharbanda, P. D., Coleman, R. N., Beatty, P. H., Jensen, S. E., Tewari, J. P. and Yang, J. 2003. Paenibacillus polymyxa strain ATCC 202127 for Biocontrol of Bacteria and Fungi. US Patent 6602500 B1.
35 Kim, J.-C., Choi, G. J., Kim, H.-J., Kim, H. T., Ahn, J. W. and Cho, K. Y. 2002. Verlamelin, an antifungal compound produced by a mycoparasite, Acremonium strictum. Plant Pathol. J. 18:102-105.   DOI   ScienceOn
36 Lavermicocca, P., Sante Iacobellis, N., Simmaco, M. and Graniti, A. 1997. Biological properties and spectrum of activity of Pseudomonas syringae pv. syringae toxins. Physiol. Mol. Plant Pathol. 50:129-140.   DOI   ScienceOn
37 Kim, P. I., Ryu, J., Kim, Y. H. and Chi, Y.-T. 2010. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 20:138-145.
38 Kim, S.-K., Ubukata, M. and Isono, K. 2003. N-Acetylglycine side chain is critical for the antimicrobial activity of xanthostatin. J. Microbiol. Biotechnol. 13:998-1000.
39 Kim, Y. S., Kim, H. M., Chang, C., Hwang, I. C., Oh, H., Ahn, J. S., Kim, K. D., Hwang, B. K. and Kim, B. S. 2007. Biological evaluation of neopeptins isolated from a Streptomyces strain. Pest Manage. Sci. 63:1208-1214.   DOI   ScienceOn
40 Lebbadi, M., Galvez, A., Maqueda, M., Martinez-Bueno, M. and Valdivia, E. 1994. Fungicin M4: a narrow spectrum peptide antibiotic from Bacillus licheniformis M-4. J. Appl. Microbiol. 77:49-53.
41 Leclere, V., Bechet, M., Adam, A., Guez, J.-S., Wathelet, B., Ongena, M., Thonart, P., Gancel, F., Chollet-Imbert, M. and Jacques, P. 2005. Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol. 71:4577-4584.   DOI   ScienceOn
42 Lee, C.-h., Kim, S., Hyun, B., Suh, J., Yon, C., Kim, C. and Lim, Y. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. I. Taxonomy, production, isolation and biological activity. J. Antibiot. 47:1402-1405.   DOI
43 Lim, Y., Suh, J., Kim, S., Hyun, B., Kim, C. and Lee, C.-H. 1994. Cepacidine A, a novel antifungal antibiotic produced by Pseudomonas cepacia. II. Physico-chemical properties and structure elucidation. J. Antibiot. 47:1406.   DOI
44 Lee, S. H., Cho, Y. E., Park, S.-H., Balaraju, K., Park, J. W., Lee, S. W. and Park, K. 2013. An antibiotic fusaricidin: a cyclic depsipeptide from Paenibacillus polymyxa E681 induces systemic resistance against Phytophthora blight of red-pepper. Phytoparasitica 41:49-58.   DOI
45 Leenders, F., Stein, T. H., Kablitz, B., Franke, P. and Vater, J. 1999. Rapid typing of Bacillus subtilis strains by their secondary metabolites using matrix-assisted laser desorption/ionization mass spectrometry of intact cells. Rapid Commun. Mass Spectrom. 13:943-949.   DOI
46 Lim, T. H., Kwon, S. Y., Seo, H. W., Min, B. S. and Lim, C. H. 2007. Antifungal activity of valinomycin, a cyclodepsipeptide from Streptomyces padanus TH-04. Nat. Prod. Sci. 13:144-147.
47 Liu, X., Wang, J., Gou, P., Mao, C., Zhu, Z.-R. and Li, H. 2007. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 119:223-229.   DOI   ScienceOn
48 Mhammedi, A., Peypoux, F., Besson, F. and Michel, G. 1982. Bacillomycin F, a new antibiotic of iturin group: isolation and characterization. J. Antibiot. 35:306.   DOI
49 Mizuhara, N., Kuroda, M., Ogita, A., Tanaka, T., Usuki, Y. and Fujita, K.-I. 2011. Antifungal thiopeptide cyclothiazomycin B1 exhibits growth inhibition accompanying morphological changes via binding to fungal cell wall chitin. Bioorg. Med. Chem. 19:5300-5310.   DOI   ScienceOn
50 Monroc, S., Badosa, E., Besalu, E., Planas, M., Bardaji, E., Montesinos, E. and Feliu, L. 2006a. Improvement of cyclic decapeptides against plant pathogenic bacteria using a combinatorial chemistry approach. Peptides 27:2575-2584.   DOI   ScienceOn
51 Monroc, S., Badosa, E., Feliu, L., Planas, M., Montesinos, E. and Bardaji, E. 2006b. De novo designed cyclic cationic peptides as inhibitors of plant pathogenic bacteria. Peptides 27:2567-2574.   DOI   ScienceOn
52 Montesinos, E. 2007. Antimicrobial peptides and plant disease control. FEMS Microbiol. Lett. 270:1-11.   DOI   ScienceOn
53 Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodivers. 5:1225-1237.   DOI   ScienceOn
54 Moon, S. S., Chen, J. L., Moore, R. E. and Patterson, G. M. 1992. Calophycin, a fungicidal cyclic decapeptide from the terrestrial blue-green alga Calothrix fusca. J. Org. Chem. 57:1097-1103.   DOI
55 Murray, T., Leighton, F. C. and Seddon, B. 1986. Inhibition of fungal spore germination by gramicidin S and its potential use as a biocontrol against fungal plant pathogens. Lett. Appl. Microbiol. 3:5-7.   DOI
56 Nagiec, M. M., Nagiec, E. E., Baltisberger, J. A., Wells, G. B., Lester, R. L. and Dickson, R. C. 1997. Sphingolipid synthesis as a target for antifungal drugs complementation of the inositol phosphorylceramide synthase defect in a mutant strain of Saccharomyces cerevisiae by the AUR1 gene. J. Biol. Chem. 272:9809-9817.   DOI   ScienceOn
57 Nielsen, T. H., Sorensen, D., Tobiasen, C., Andersen, J. B., Christophersen, C., Givskov, M. and Sorensen, J. 2002. Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl. Environ. Microbiol. 68:3416-3423.   DOI
58 Osada, H. and Isono, K. 1986. Purification and characterization of ascamycin-hydrolysing aminopeptidase from Xanthomonas citri. Biochem. J. 233:459-463.   DOI
59 Nielsen, T. H. and Sorensen, J. 2003. Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl. Environ. Microbiol. 69:861-868.   DOI
60 Ongena, M., Jacques, P., Tour, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol. 69:29-38.   DOI
61 Park, C. N., Lee, J. M., Lee, D. and Kim, B. S. 2008. Antifungal activity of valinomycin, a peptide antibiotic produced by Streptomyces sp. Strain M10 antagonistic to Botrytis cinerea. J. Microbiol. Biotechnol. 18:880-884.
62 Pedras, M. S. C., Ismail, N., Quail, J. W. and Boyetchko, S. M. 2003. Structure, chemistry, and biological activity of pseudophomins A and B, new cyclic lipodepsipeptides isolated from the biocontrol bacterium Pseudomonas fluorescens. Phytochemistry 62:1105-1114.   DOI   ScienceOn
63 Pergament, I. and Carmeli, S. 1994. Schizotrin A; a novel antimicrobial cyclic peptide from a cyanobacterium. Tetrahedron Lett. 35:8473-8476.   DOI   ScienceOn
64 Perkins, J., Guterman, S., Howitt, C., Williams, V. and Pero, J. 1990. Streptomyces genes involved in biosynthesis of the peptide antibiotic valinomycin. J. Bacteriol. 172: 3108-3116.   DOI
65 Perron, G. G., Zasloff, M. and Bell, G. 2006. Experimental evolution of resistance to an antimicrobial peptide. Proc. R. Soc. London, B 273:251-256.   DOI   ScienceOn
66 Peypoux, F., Bonmatin, J. and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51:553-563.   DOI
67 Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant-Microbe Interact. 20:430-440.   DOI   ScienceOn
68 Peypoux, F., Pommier, M., Marion, D., Ptak, M., Das, B. and Michel, G. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39:636-641.   DOI
69 Reed, J. D., Edwards, D. L. and Gonzalez, C. F. 1997. Synthetic peptide combinatorial libraries: a method for the identification of bioactive peptides against phytopathogenic fungi. Mol. Plant-Microbe Interact. 10:537-549.   DOI   ScienceOn
70 Rezai, T., Yu, B., Millhauser, G. L., Jacobson, M. P. and Lokey, R. S. 2006. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc. 128:2510-2511.   DOI   ScienceOn
71 Satomi, T., Kusakabe, H., Nakamura, G., Nishio, T., Uramoto, M. and Isono, K. 1982. Neopeptins A and B, new antifungal antibiotics. Agric. Biol. Chem. 46:2621-2623.   DOI
72 Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S. and van Tuinen, D. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 Isolated from the Sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71:6501-6507.   DOI   ScienceOn
73 Shai, Y. 1995. Molecular recognition between membrane-spanning polypeptides. Trends Biochemical Sci. 20:460-464.   DOI   ScienceOn
74 Singh, A., Phougat, N., Kumar, M. and Chhillar, A. 2013. Antifungal proteins: potent candidate for inhibition of pathogenic fungi. Curr. Bioact. Compd. 9:101-112.   DOI
75 Stall, R. E. and Seymour, C. P. 1983. Canker, a threat to citrus in the Gulf-Coast states. Plant Dis. 67:581-585.   DOI
76 Singh, P. and Cameotra, S. S. 2004. Potential applications of microbial surfactants in biomedical sciences. Trends in Biotech. 22:142-146.   DOI   ScienceOn
77 SirDeshpande, B. V. and Toogood, P. L. 1995. Mechanism of protein synthesis inhibition by didemnin B in vitro. Biochem. J. 34:9177-9184.   DOI
78 Smits, G., C Kapteyn, J., van den Ende, H. and M Klis, F. 1999. Cell wall dynamics in yeast. Curr. Opin. Microbiol. 2:348-352.   DOI   ScienceOn
79 Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56:845-857.   DOI   ScienceOn
80 Strobel, G. A., Miller, R. V., Martinez-Miller, C., Condron, M. M., Teplow, D. B. and Hess, W. 1999. Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145:1919-1926.   DOI   ScienceOn
81 Takesako, K., Ikai, K., Haruna, F., Endo, M., Shimanaka, K., Sono, E., Nakamura, T., Kato, I. and Yamaguchi, H. 1991. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot. 44:919-924.   DOI
82 Tanaka, K., Ishihara, A. and Nakajima, H. 2014. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 Bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens. J. Agric. Food Chem. 62:1469-1476.   DOI   ScienceOn
83 Thimon, L., Peyoux, F., Maget-Dana, R. and Michel, G. 1992. Surface-active properties of antifungal lipopeptides produced by Bacillus subtilis. J. Am. Oil. Chem. Soc. 69:92-93.   DOI
84 Vijayakumar, E., Roy, K., Chatterjee, S., Deshmukh, S., Ganguli, B., Fehlhaber, H.-W. and Kogler, H. 1996. Arthrichitin. A new cell wall active metabolite from Arthrinium phaeospermum. J. Org. Chem. 61:6591-6593.   DOI   ScienceOn
85 Troskie, A. M. 2014. Tyrocidines, cyclic decapeptides produced by soil bacilli, as potent inhibitors of fungal pathogens. Thesis (PhD)-Stellenbosch University.
86 Ubukata, M., Uramoto, M. and Isono, K. 1984. The structure of neopeptins, inhibitors of fungal cell wall biosynthesis. Tetrahedron Lett. 25:423-426.   DOI   ScienceOn
87 Ubukata, M., Uramoto, M., Uzawa, J. and Isono, K. 1986. Structure and biological activity of neopeptins A, B and C, inhibitors of fungal cell wall glycan synthesis. Agric. Biol. Chem. 50:357-365.   DOI
88 Wang, J., Yu, Y., Tang, K., Liu, W., He, X., Huang, X. and Deng, Z. 2010. Identification and analysis of the biosynthetic gene cluster encoding the thiopeptide antibiotic cyclothiazomycin in Streptomyces hygroscopicus 10-22. Appl. Environ. Microbiol. 76:2335-2344.   DOI   ScienceOn
89 Xu, S. J. and Choi, W. 2014. Antifungal activity of Paenibacillus kribbensis strain T-9 isolated from soils against several plant pathogenic fungi. Plant Pathol. J. 30:102-108.   DOI   ScienceOn
90 Yoon, M. Y. and Kim, J. C. 2013. Recent trends in studies on botanical fungicides in agriculture. Plant Pathol. J. 29:1-9.   DOI   ScienceOn