• Title/Summary/Keyword: Anti-reflection film

Search Result 77, Processing Time 0.029 seconds

Anti-Reflection Thin Film For Photoelectric Conversion Efficiency Enhanced of Dye-Sensitized Solar Cells (염료감응형 태양전지의 광전변환효율 향상을 위한 무반사 박막)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Hong, Kyung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.814-818
    • /
    • 2016
  • DSSCs (dye-sensitized solar cells) based on $TiO_2/SiO_2$ multi layer AR (anti-reflection) coating on the outer glass FTO (fluorine-doped tin oxide) substrate are investigated. We have coated an AR layer on the surface of a DSSCs device by using an IAD (ion beam-assisted deposition) system and investigated the effects of the AR layer by measuring photovoltaic performance. Compared to the pure FTO substrate, the multi layer AR coating increased the total transmittance from 67.4 to 72.9% at 530 nm of wavelength. The main enhancement of solar conversion efficiency is attributed to the reduction of light reflection at the FTO substrate surface. This leads to the increase of Jsc and the efficiency improvement of DSSCs.

Reflectivity Control at Substrate / Photoresist Interface by Inorganic Bottom Anti-Reflection Coating for Nanometer-scaled Devices

  • Kim, Sang-Yong;Kim, Yong-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.159-163
    • /
    • 2014
  • More accurate CD (Critical Dimension) control is required for the nanometer-scaled devices. However, since the reflectivity between substrate and PR (Photoresist) becomes higher, the CD (Critical Dimension) swing curve was intensified. The higher reflectivity also causes PR notching due to the pattern of sub-layer. For this device requirement, it was optimized for the thickness, refractive index(n) and absorption coefficient(k) in the bottom anti-reflective coating(BARC; SiON) and photoresist with the minimum reflectivity. The computational simulated conditions, which were determined with the thickness of 33 nm, n of 1.89 and k of 0.369 as the optimum condition, were successfully applied to the experiments with no standing wave for the 0.13um-device. At this condition, the lowest reflectivity was 0.44%. This optimum condition for BARC SiON film was applied to the process for 0.13um-device. The optimum SiON film as BARC to PR and sub-layer could be formed with the accurate CD control and no standing waver for the nanometer-scaled semiconductor manufacturing process.

A Novel Atomic Layer Deposited Al2O3 Film with Diluted NH4OH for High-Efficient c-Si Solar Cell

  • Oh, Sung-Kwen;Shin, Hong-Sik;Jeong, Kwang-Seok;Li, Meng;Lee, Horyeong;Han, Kyumin;Lee, Yongwoo;Lee, Ga-Won;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.40-47
    • /
    • 2014
  • In this paper, $Al_2O_3$ film deposited by thermal atomic layer deposition (ALD) with diluted $NH_4OH$ instead of $H_2O$ was suggested for passivation layer and anti-reflection (AR) coating of the p-type crystalline Si (c-Si) solar cell application. It was confirmed that the deposition rate and refractive index of $Al_2O_3$ film was proportional to the $NH_4OH$ concentration. $Al_2O_3$ film deposited with 5 % $NH_4OH$ has the greatest negative fixed oxide charge density ($Q_f$), which can be explained by aluminum vacancies ($V_{Al}$) or oxygen interstitials ($O_i$) under O-rich condition. $Al_2O_3$ film deposited with $NH_4OH$ 5 % condition also shows lower interface trap density ($D_{it}$) distribution than those of other conditions. At $NH_4OH$ 5 % condition, moreover, $Al_2O_3$ film shows the highest excess carrier lifetime (${\tau}_{PCD}$) and the lowest surface recombination velocity ($S_{eff}$), which are linked with its passivation properties. The proposed $Al_2O_3$ film deposited with diluted $NH_4OH$ is very promising for passivation layer and AR coating of the p-type c-Si solar cell.

Real-time controlled deposition of anti-reflection and high-reflection coatings for semiconductor laser (반도체 레이저 단면의 실시간 무반사 및 고반사 코팅)

  • 김효상;박흥진;황보창권;김부균;김형문;주흥로
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.395-402
    • /
    • 1997
  • We have obtained the optimum thickness of anti-reflection(AR) coating on one of facets of a $\1.55mu\textrm{m}$ InGaAsP MQW FP semiconductor laser by in-site monitoring of the light emitted from the rear facet during the film deposition on the fore facet. The optimum thickness of $SiO_x$ thin film whose refractive index is 1.85 was found to be 188 nm. The reflectivity of the coated facet was calculated by the threshold current ratio of before and after AR coating, which was obtained from exprimental data, and it was about 2$\times$ $10^{-4}$. The results show that the output power is increased by 87% at bias current 60 mA, the slope efficiency is increased by 3.4 times, and the threshold current is increased by 2.64 times. By in-situ depositing of the $Si/SiO_2$ thin film HR coating on the rear facet, the output power was increased by 160% than before the AR and HR coatings, the slope efficiency was increased by 3.8 times, the threshold current was increased by 1.07 times, which is similar to the value of before AR coating. Due to the AR and HR coatings the output light power characteristics were enhanced.

  • PDF

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Anti-Reflective coating for External Efficiency of Organic Light Emitting Diode

  • Kim, Byoung-Yong;Han, Jin-Woo;Kim, Jong-Yeon;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Oae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.449-449
    • /
    • 2007
  • OLED has many advantages of low voltage operation, self radiation, light weight, thin thickness, wide view angle and fast response time to overcome existing liquid crystal display (LCD)'s weakness. Therefore, It draws attention as promising display and has already developed for manufactured goods. Also, OLED is regarded as a only substitute of flexible display with a thin display. A considerable portion of the light originating film emissive centers buried in a solid film never escapes due to internal reflection at the air-film interface and is scattered as edge emission or dissipated within the solid film This is one of the major reasons why the luminous power efficiency of OLED remains low, in spite of research progress in OLED. Although several ways of overcoming this difficulty have been reported, no comprehensive method has been proposed yet. In this paper, we propose that use of anti-reflective coating layers.

  • PDF

Effect of a SiO2 Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors

  • Zumuukhorol, Munkhsaikhan;Khurelbaatar, Zagarzusem;Kim, Jong-Hee;Shim, Kyu-Hwan;Lee, Sung-Nam;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.483-491
    • /
    • 2017
  • The interdigitated germanium (Ge) meta-lsemiconductor-metal (MSM) photodetectors (PDs) with and without an $SiO_2$ anti-reflection (AR) layer was fabricated, and the effect of $SiO_2$ AR layer on their optoelectronic response properties were investigated in detail. The lowest reflectance of 15.6% at the wavelength of 1550 nm was obtained with a $SiO_2$ AR layer with a thickness of 260 nm, which was in a good agreement with theoretically calculated film thickness for minimizing the reflection of Ge surface. The Ge MSM PD with 260 nm-thick $SiO_2$ AR layer exhibited enhanced device performance with the maximum values of responsivity of 0.65 A/W, the quantum efficiency of 52.2%, and the detectivity of $2.49{\times}10^9cm\;Hz^{0.5}W^{-1}$ under the light illumination with a wavelength of 1550 nm. Moreover, time-dependent switching analysis of Ge MSM PD with 260 nm- thick $SiO_2$ AR layer showed highest on/off ratio with excellent stability and reproducibility. All this investigation implies that 260 nm-thick $SiO_2$ AR layer, which is effective in the reduction in the reflection of Ge surface, has a great potential for Ge based optoelectronic devices.

Properties of Indium Tin Oxide Multilayer Fabricated by Glancing Angle Deposition Method

  • Oh, Gyujin;Lee, Kyoung Su;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.367-367
    • /
    • 2013
  • Commercial applications of indium tin oxide (ITO) can be separated into two useful areas. As it is perceived to bear electrical properties and optical transparency at once, its chance to apply to promising fields, usually for an optical device, gets greater in the passing time. ITO is one of the transparent conducting oxides (TCO), and required to carry the relative resistance less than $10^{-3}{\Omega}$/cm and transmittances over 80 % in the visible wavelength of light. Because ITO has considerable refractive index, there exist applications for anti-reflection coatings. Anti-reflection properties require gradual change in refractive index from films to air. Such changes are obtained from film density or nano-clustered fractional void. Glancing angle deposition (GLAD) method is a well known process for adjusting nanostructure of the films. From its shadowing effects, GLAD helps to deposit well-controlled porous films effectively. In this study, we are comparing the reference sample to samples coated with controlled ITO multilayer accumulated by an e-beam evaporation system. At first, the single ITO layer samples are prepared to decide refractive index with ellipsometry. Afterwards, ITO multilayer samples are fabricated and fitted by multilayer ellipsometric model based on single layer data. The structural properties were measured by using atomic force microscopy (AFM), and by scanning X-ray diffraction (XRD) measurements. The ellipsometry was used to determine refractive indices and extinction coefficient. The optical transmittance of the film was investigated by using an ultraviolet-visible (UV-Vis) spectrophotometer.

  • PDF

The Increase of Photodiode Efficiency by using Transparent Conductive Aluminium-doped Zinc Oxide Thin Film (Aluminium-doped Zinc Oxide 투명전도막을 적용한 Photodiode의 수광효율 향상)

  • Jeong, Yun-Hwan;Jin, Hu-Jie;Park, Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.9
    • /
    • pp.863-867
    • /
    • 2008
  • In this paper, to increase the light current efficiency of photodiode, we fabricated aluminum-doped zinc oxide(AZO) thin films by RF magnetron sputtering. AZO thin films were deposited at low temperature of 100 $^{\circ}C$ and different RF powers of 50, 100, 150 and 200 W due to selective process technology. Then the AZO thin films were annealed at 400 $^{\circ}C$ for 1 hr in vacuum ambient to increase crystalline. The lowest resistivity of 1.35 ${\times}$ $10^{-3}$ ${\Omega}cm$ and a high transmittance over 90 % were obtained under the conditions of 3 mTorr, 100 'c and 150 W. The optimized AZO thin films were deposited as anti-reflection coating on PN junction of silicon photodiode. It was confirmed by the result of $V_r-I_{ph}$ curve that the efficiency of photodiode with AZO thin film was enhanced 17 % more than commercial photodiode.

Improvement of Production Efficiency and Coating Quality of Multi Antireflection Filter with a Large Coating System Containing Two faces Coating System (양면 코팅 시스템을 갖춘 대형 증착기에 의한 다층 반사방지막의 생산성 및 품질 향상)

  • 한두희
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.33-36
    • /
    • 2000
  • Auto DOME-reversing system had been installed in a vacuum coating chamber which decreased the coating time, the electric energy spending and the contamination by rotating and revilving substance. Auto multi coating with dual electron beam was accomplished and effective coating area was increased. The coating duration was decreased with 30%. the production efficiency were increased with 50%. Also the surface conductivity the coated film uniformity and anti-reflection capablity were also improved.

  • PDF