• Title/Summary/Keyword: Anti-microbial

Search Result 536, Processing Time 0.037 seconds

Anti-oxidant, Anti-inflammation and Anti-microbial Effects of Hoangtonogak Plus Extracts (황토노각플러스 추출물의 항산화, 항염 및 항미생물 효능)

  • Cho, Jun-Hee;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.183-190
    • /
    • 2020
  • This study evaluated the possibility of Hoangtonogak Plus extracts as a bioactive ingredients for cosmetic products. Methanol(MN) and hot-water(WN) extracts were analysed by DPPH/ABTS radical scavenging activity, FRAP value for anti-oxidant activity, MTT assay for cell viability, inhibition of NO production and iNOS protein expression for anti-inflammatory effect, paper disc diffusion method for anti-microbial activity against Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli.. The contents of total polyphenol of MN and WN extracts were 2.92±0.01 mgGAE/g and 1.67±0.02 mgGAE/g, respectively. DPPH, ABTS and FRAP values of MN extracts were higher than WN at each concentration. No significant cytotoxicity was observed in RAW264.7 cells. Furthermore, NO production of MN and WN at 1 mg/mL concentration was measured as 11.69 μM, 20.4 μM, respectively. In addition, MN extracts showed anti-microbial effect only on S. epidermidis. Also MN extracts suppressed iNOS protein level in a concentration-dependent manner. According to our results, the MN extracts demonstrated its potential as a natural source of antioxidant with anti-microbial and anti-inflammatory properties.

Isolation of Antimicrobial Active Substances from Chinese Gall Nut (Schlechtendalia chinensis) against Watermelon Fruit Rot Pathogens (Acidovorax avenae subsp. Citrulli) (오배자(Schlechtendalia chinensis)로부터 수박 과실썩음병 병원균(Acidovorax avenae subsp. citrulli)에 대한 항균 활성물질 탐색)

  • Kim, Hyun-Woo;Choi, Yong-Hwa
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.323-334
    • /
    • 2015
  • This study was conducted to develop environment-friendly agricultural products with anti-microbial activity against Acidovorax avenae subsp. citrulli as a pathogen of bacterial fruit blotch in cucurbit. Schlechtendalia chinensis was extracted by MeOH and solvent fraction. The hexane fraction, which showed highest value of anti-microbial activity, was analyzed by GC-MS. Each mass spectra, corresponding to each peak of chromatogram, was compared to MS database of Wiley library. As a result, myristic acid, palmitic acid and 3-n-pentadecylphenol were identified as maine compounds showing antimicrobial activity against A. avenae subsp. citrulli. Bioassay using commercial myristic acid, palmitic acid and 3-n-pentadecylphenol to test for the anti-microbial activity conformed the anti-microbial activity of potential active compounds, and myristic acid and 3-n-pentadecylphenol showed strong activity. In conclusion, myristic acid and 3-n-pentadecylphenol identified from S. chinensis were anti-microbial chemicals.

Current Status of Microbial Phenylethanoid Biosynthesis

  • Kim, Song-Yi;Song, Min Kyung;Jeon, Ju Hyun;Ahn, Joong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1225-1232
    • /
    • 2018
  • Phenylethanoids, including 2-phenylethanol, tyrosol, and salidroside are a group of phenolic compounds with a C6-C2 carbon skeleton synthesized by plants. Phenylethanoids display a variety of biological activities, including antibacterial, anticancer, anti-inflammatory, neuroprotective, and anti-asthmatic activities. Recently, successful microbial synthesis of phenylethanoids through metabolic engineering and synthetic biology approaches has been reported and could allow phenylethanoid production from alternative microbial sources. Here, we review the recent achievements in the synthesis of phenylethanoids by microorganisms. The work done so far will contribute to the production of diverse phenylethanoids using various microbial systems and facilitate exploration of further diverse biological activities of phenylethanoids.

Antibacterial and antifungal effects of Korean propolis against ginseng disease

  • Kim, Sung-Kuk;Woo, Soon Ok;Han, Sang Mi;Bang, Kyeong Won;Kim, Se Gun;Choi, Hong Min;Moon, Hyo Jung;Lee, Sung-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.2
    • /
    • pp.82-85
    • /
    • 2019
  • We investigated the anti-microbial activity of propolis against the pathogenic bacteria and fungi on ginseng. We selected six microbials that caused postharvest root rots in ginseng. Propolis extracts were prepared by using the ethanol extraction method. We seeded the bacteria and fungi related to ginseng disease on a specific culture medium, and treated it with propolis extracts by using the paper disc method. Propolis extracts indicate the anti-microbial activity against Paenibacillus polymyxa, Fusarium solani, Rhizoctonia solani AG-1 and Pythium ultimum. However, the anti-fungal activity of propolis is weak on Pseudomonas fluorescens subsp. Cellulosa and Colletotrichum gloeosporioides. As a result, the antimicrobial effects of propolis against microbial that prevent ginseng growth were confirmed. The antimicrobial effects are shown according to the concentration of propolis against root rot. The fungi also showed antibacterial effects in a dose-dependent manner.

PREPARATION OF MULTIFUNCTIONAL LOW MOLECULAR WEIGHT CHITOSAN AND ITS APPLICATION IN COSMETICS.

  • Ryu, Chang-Suk;Kim, Hyung-Bae;Kim, Jeong-Ha;Jo, Byoung-Kee;Suh, Sang-Bong
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.24 no.3
    • /
    • pp.89-95
    • /
    • 1998
  • The aim of this study is to elucidate the anti-microbial activity and anti-oxidative activity of water-soluble chitosan with a molecular weight of 5,000-200,000. Water-soluble chitosans have demonstrated a regular anti-microbial activity on the tested strians by the paper disk method. In the MIC (Minimum Inhibitory Concentration) test, CC-01 (MW=5,000) with the lower MW showed the higher MIC value than the higher MW chitosan. The MW of chitosan increase, the MIC decreases. MICs of 4 chitosans(CC-02∼CC-05) against S. aureusTCC 65389, E coli ATCC 8739, p. aeruginosa, ATCC 9027 and C. albicans ,ATCC 10231 were 7.0-39.O$\mu\textrm{m}$, whereas MICs of chitosans against A. niger were over 2.OmM. Formula containing chitosan showed higher anti-microbial activities than the formula made with the chemical preservatives(Methylparaben 0.2% and Imidazolidinyl Urea 0.3%). Among 5 water-soluble chitosans, CC-03(MW=92,163) showed the most potent anti-oxidative activity (IC$\sub$50/ : 0.2mM). In conclusion, the water-soluble low molecular weight chitosan could be served as natural preservatives and antioxidant in cosmetics.

  • PDF

Effects of bamboo salt on dental caries prevention (임상가를 위한 특집 2 - 죽염을 이용한 우식예방)

  • Choi, Choong-Ho
    • The Journal of the Korean dental association
    • /
    • v.50 no.9
    • /
    • pp.552-557
    • /
    • 2012
  • Bamboo salt is a special processed salt by Korean traditional recipe. Recent study results showed that bamboo salt or bamboo salt with some other materials like herbal extracts have the anti-microbial activity, inhibition effects of dental plaque and gingival inflammation. Bamboo salt also showed anti-cariogenic effects; remineralization and acid resistance. Compare to fluoride toothpaste, bomboo salt toothpaste with fluoride showed the more effective remineralization on inner part of the early dental caries lesion. It increased the surface hardness and decreased lesion depth of early dental caries lesion. Thus, it is suggested thai bamboo salt could be used as a anti-microbial, anti-plaque, anti-inflammatory and anti-cariogenic material for oral disease prevention. Especially, bamboo salt dentifrice with fluoride can be recommanded as a useful remineralizing agent.

Anti-Oral Microbial Effect of Ethanol Extract of Angelica gigas Nakai

  • Soon-Jeong Jeong
    • Journal of dental hygiene science
    • /
    • v.24 no.1
    • /
    • pp.54-61
    • /
    • 2024
  • Background: The Korean name for Angelica gigas Nakai (AGN) is Cham-dang-gui, which grows naturally or is cultivated, and its dried roots are used in traditional herbal medicines. The AGN root exert various pharmacological effects. Despite the various pharmacological effects of the AGN root, there are no reports on its anti-oral microbial effects. The purpose of this study was to reveal the anti-oral microbial effect and the microbial and biochemical changes in oral microorganisms according to the concentration of the ethanol extract of AGN (EAGN) root, and to confirm the possibility of using EAGN as a plant-derived functional substance for controlling oral infectious microorganisms. Methods: Disk diffusion test, growth measurement, biofilm formation assay, and measurements of acid production and buffering capacity were performed to confirm the antibacterial effect of EAGN. Results: EAGN showed anti-oral bacterial effects against Streptococcus mutans and Aggregatibacter actinomycetemcomitans at all concentrations, with S. mutans showing a more susceptible effect at concentrations above 5.0 mg/ml and A. actinomycetemcomitans at 3.75 mg/ml. EAGN treatment significantly reduced A. actinomycetemcomitans growth at all concentrations tested. Biofilm formation was significantly reduced at concentrations above 3.75 mg/ml for S. mutans and 2.5 mg/ml for A. actinomycetemcomitans. Acid production in S. mutans and A. actinomycetemcomitans was significantly increased by treatment with EAGN, and the buffering capacities of S. mutans and A. actinomycetemcomitans increased from an EAGN concentration of 3.75 mg/ml and above. Conclusion: EAGN showed anti-oral bacterial effects against both S. mutans and A. actinomycetemcomitans at concentrations above 3.75 mg/ml, which were thought to be related to the inhibition of their growth and biofilm formation. Therefore, EAGN can be used as a safe functional substance derived from medicinal plants owing to its antibacterial effects against S. mutans and A. actinomycetemcomitans.

Antimicrobial Activities of Medicinal Herb Extracts (한약재추출물의 항균활성)

  • Chang, Hyung-Soo;Choi, Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.2
    • /
    • pp.261-269
    • /
    • 2012
  • In this study, 18 kinds of Korean medicinal herb extracts were examined for anti-microbial activities against pathogenic microorganisms. The methanol (MeOH) extracts from Schizandra chinensis, Rhus javanica and Caesalpinia sappan exhibited antimicrobial activities against most pathogenic microorganisms at concentrations of 5 mg/mL, whereas the other 15 extracts exhibited anti-microbial activities at concentrations of 30 mg/mL. The minimum concentration at which Schizandra chinensis extracts inhibited for S. epidermidis and Bor. bronchiseptica was 0.6 mg/mL. The MeOH extracts from Schizandra chinensis, Caesalpinia sappan, Rhus javanica and Seutellaria baicalensis which had higher anti-microbial activities were subsequently fractionated using 5 different solvents, and further screened for anti-microbial activities. The inhibitory effects of ethyl acetate (EtOAc) extracts on microbial growth were greater compared to any other solvent extracts. In order to investigate the inhibitory effect of Korean medicinal herbs with high anti-microbial activities on microbial proliferation, the MeOH extracts at concentrations of 0, 100, 300 and 500 ppm were added to the media. No addition of extracts caused rapid growth of microbes after 12 hours incubation. As the concentration of extracts from Rhus javanica and Caesalpinia sappan increased, the growth-inhibiting effect on gram-positive bacteria including S. aureus, S. epidermidis, and L. monocytogenes was prominent. Rhus javanica extracts exhibited growth-inhibiting activity for gram-negative bacteria including Sal. Pullorum and Sal. Choleraesuis. The low concentration of extracts from Rhus javanica and Caesalpinia sappan exhibited the growth of Bor. bronchiseptica and E. coli serotype $O_8$. However, the higher concentration of extracts from Rhus javanica and Caesalpinia sappan exhibited a strong inhibitory effect on microbial proliferation.

Isolation, Physico-chemical Properties and Biological Activity of Aurodox Group Antibiotics

  • Kim, Si-Kwan;Yeo, Woon-Hyung;Kim, Sang-Seock
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.265-269
    • /
    • 1996
  • An isolate of Streptomyces rochei synonym was found to produce antibiotics with narrow anti-microbial spectrum against Streptococcus and Xanthomonas sp. Among the antibiotic complex produced by the strain, the main active compound was isolated, and its physico-chemical properties and biological activities were investigated. Molecular weight of the compound was determined to be ${[M+H]}^+$ 797 (FAB-MS). UV, $^1H \;and\;^{13}C$ NMR, and IR spectra suggested that the compound is a kirromycin-like aurodox group antibiotic. However, the anti-microbial spectrum of the main compound was slightly different from that of kirromycin. In addition, it was newly found that kirromycin showed a selective anti-microbial activity against Streptococcus pyogenes and phytopathogenic Xanthomonas sp.

  • PDF

Skin Patch Test and Antibacterial Properties of the Anti-microbial Agent and Melamine Resin Blend Treated Fabric (멜라민 수지와 항균제 혼합 수지 가공 직물의 항균성과 피부 적합성)

  • Chun, Tae-Ill;Park, Jung-Whan
    • Fashion & Textile Research Journal
    • /
    • v.7 no.1
    • /
    • pp.81-84
    • /
    • 2005
  • Skin patch test and antibacterial properties of the reaction products between poly(hexamethyl biguanide) hydrochloride and trimethylol melamine on textile fabrics were examined. Antibacterial activities of anti-microbial agent treated samples are very good. The reduction ratios against four kinds of colonies are 99.9 % after repeated laundering ten times. Skin patch test results for anti-microbial agent treated samples are almost-negative by Hi-scope judgement and macroscopical judgement.