Browse > Article
http://dx.doi.org/10.4014/jmb.1805.05021

Current Status of Microbial Phenylethanoid Biosynthesis  

Kim, Song-Yi (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Song, Min Kyung (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Jeon, Ju Hyun (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Ahn, Joong-Hoon (Department of Integrative Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.8, 2018 , pp. 1225-1232 More about this Journal
Abstract
Phenylethanoids, including 2-phenylethanol, tyrosol, and salidroside are a group of phenolic compounds with a C6-C2 carbon skeleton synthesized by plants. Phenylethanoids display a variety of biological activities, including antibacterial, anticancer, anti-inflammatory, neuroprotective, and anti-asthmatic activities. Recently, successful microbial synthesis of phenylethanoids through metabolic engineering and synthetic biology approaches has been reported and could allow phenylethanoid production from alternative microbial sources. Here, we review the recent achievements in the synthesis of phenylethanoids by microorganisms. The work done so far will contribute to the production of diverse phenylethanoids using various microbial systems and facilitate exploration of further diverse biological activities of phenylethanoids.
Keywords
Metabolic engineering; microbial production; phenylethanoids;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shi H, Xie D, Yang R, Cheng Y. 2014. Synthesis of caffeic acid phenethyl ester derivatives, and their cytoprotective and neuritogenic activities in PC12 cells. J. Agric. Food Chem. 62: 5046-5053.   DOI
2 Zhang P, Tang Y, Li N-G, Zhu Y,Duan J-A. 2014. Bioactivity and chemical synthesis of caffeic acid phenethyl ester and its derivatives. Molecules 19: 16458-16476.   DOI
3 Schoch G, Goepfert S, Morant M, Hehn A, Meyer D, Ullmann P, et al. 2001. CYP98A3 from Arabidopsis thaliana is a 3'-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276: 36566-36574.   DOI
4 Widjaja A, Yeh T-H, Ju Y-H. 2008. Enzymatic synthesis of caffeic acid phenethyl ester. J. Chin. Inst. Chem. Eng. 39: 13-418.   DOI
5 Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, et al. 2017. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Met. Eng. 44: 89-99.   DOI
6 Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177.   DOI
7 Fu G, Pang H, Wong YH 2008. Naturally occurring phenylethanoid glycosides: potential leads for new theraperutics. Cur. Med. Chem. 15: 2592-2613.   DOI
8 Kumar S, Pandey AK. 2013. Chemistry and biological activity of flavonoids: an overview. Sci. World J. 2013: 1627504.
9 Agrawal AD. 2011. Pharmacological activities of flavonoids: a review. Int. J. Pharm. Sci. Nanotech. 4: 1394-1398.
10 Rimando AM, Suh N. 2008. Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med. 74: 1635-1643.   DOI
11 Xue Z, Yang B. 2016. Phenylethanoid glycosides: research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 21: 991.   DOI
12 Kaminaga Y, Schnepp J, Peel G, Kish CM, Ben-Nissan G, Weiss D, et al. 2006. Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J. Biol. Chem. 281: 23357- 23366.   DOI
13 Hua D, Xu P. 2011. Recent advances in biotechnological production of 2-phenylethanol. Biotechnol. Adv. 29: 654-660.   DOI
14 Kim T-Y, Kee S-W, Oh M-K. 2014. Biosynthesis of 2- phenylethanol from glucose with genetically engineered Kluyveomycesmarxianus. Enzyme Microbial. Technol. 61-62: 44-47.   DOI
15 Ma LQ, Gao DY, Wang YN, Wang HH, Zhang JX, Pang XB, et al. 2007. Molecular cloning and overexpression of a novel UDP-glucosyltransferase elevating salidroside levels in Rhodiolasachalinensis. Plant Cell Rep. 26: 989-999.   DOI
16 Torrens-Spence M, Gillaspy G, Zhao B, Harich K, White RH, Li J. 2012. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme. Biochem. Biophys. Res. Commun. 418: 211-216.   DOI
17 Torrens-Spence M, Liu P, Ding H, Harich K, Gillaspy G, Li J. 2013. Biochemical evaluation of the decarboxylationdeamination activities of plant aromatic amino acid decarboxylase. J. Biol. Chem. 288: 2376-2387.   DOI
18 Lester G. 1965. Inhibition of growth, synthesis, and permeability in Neurospora crassa byphenethyl alcohol. J. Bacteriol. 90: 29-37.
19 Viuda-Martos M, Ruiz-Navajas Y, Fernandez-Lopez J, Perez-Alvares JA. 2008. Functional properties of honey, propolis and royal jelly. J. Food Sci. 73: R117-124.   DOI
20 Cifani C, Micioni Di B MV, Vitale G, Ruggieri V, Ciccocioppo R, Massi M. 2010. Effect of salidroside, active principle of Rhodiolarosea extract, on binge eating. Physiol. Behav. 101: 555-562.   DOI
21 Piroddi M, Albini A, Fabiani R, Giovannelli L, Luceri C, Natella F, et al. 2017. Nutrigenomics of extra-virgin olive oil: a review. Biofactors 43: 17-41.   DOI
22 St-Laurent-Thibault C, Arseneault M, Longpre F, Ramassamy C. 2011. Tyrosol and hydroxytyrosol, two main components of olive oil, protect N2a cells against amyloid-${\beta}$-induced toxicity. Involvement of the NF-$\kappa$B signaling. Curr. AlzheimerRes. 8: 543-551.   DOI
23 Ristagno G, Fumagalli F, Porretta-Serapiglia C, Orru A, Cassina C, Pesaresi M, et al. 2012. Hydroxytyrosolattenuates peripheral neuropathy in streptozotocin-induced diabetes in rats. J. Agric. Food Chem. 60: 5859-5865.   DOI
24 Tripoli E, Giammanoco M, Tabacchi G, Di Majo D, Giammano S, La Guardia M. 2005. The phenolic compounds of olive oil: structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 18: 98-112.   DOI
25 Rodriguez A, Martnez JA, Flores N, Escalante A, Gosset G, Bolivar F. 2014. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb. Cell Fact. 13: 126.
26 Huang C J, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147.   DOI
27 Chung H Jr, Lee SL, Chou CC. 2000. Production and molar yield of 2-phenylethanol by Pichia fermentans L-5 as affected by some medium components. J. Biosci. Bioeng. 90: 142-147.   DOI
28 Kim B, Cho B-R, Hahn J-S. 2013. Metabolic engineering of Saccharomyces cerevisiae for the production of 2-phenylethanol via Ehrlich pathway. Biotechnol. Bioeng. 111: 115-124.
29 Ikeda M.2006. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626.   DOI
30 Lutke-Eversloh T, Stephanopoulos G. 2007.L-Tyrosine production by deregulated strains of Escherichia coli. Appl. Microbiol. Biotechnol. 75: 103-110.   DOI
31 Sprenger GA. 2007. From scratch value; engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismite. Appl. Microbial. Biotechnol. 75: 1628-1634.
32 Kang Z, Zhang C, Du G, Chen J. 2013. Metabolic engineering of Escherichia coli for production of 2-phenylethanol from renewable glucose. Appl. Biochem. Biotechnol. 172: 2012-2021.
33 Vermerris W, Nicholson R. 2008. Families of phenolic compounds and means of classification. In Phenolic compound biochemistry, pp. 1-34, Springer.
34 Cheynier V. 2012. Phenolic compounds: from plants to foods. Phytochem. Rev. 11: 153-177.   DOI
35 Hollman PCH. 2001. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 81: 842-852.   DOI
36 Vogt T. 2013. Phenylpropanoid biosynthesis. Mol. Plant. 3: 2-20.
37 Vilaplana-Pérez C, Auñón D, García-Flores LA, Gil- Izquierdo A. 2014. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front. Nutr. 1: 18.
38 Satoh Y, Tajima K, Munekata M, Keasling JD, Lee TS. 2012. Engineering of L-tyrosine oxidation in Escherichia coli and microbial production of hydroxytyrosol. Met. Eng. 14: 603-610.   DOI
39 Xue Y, Chen X, Yang C, Chang J, Shen W, Fan Y. 2017. Engineering Escherichia coli for enhanced tyrosol production. J. Agric. Food Chem. 65: 4708-4714.   DOI
40 Kobayashi S, Makino A. 2009. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 109: 5288-5353.   DOI
41 Palumbo DR, Occhiuto F, Spadaro F, Circosta C. 2012. Rhodiolarosea extract protects human cortical neurons against glutamate and hydrogen peroxide-induced cell death through reduction in the accumulation of intracellular calcium. Phytother. Res. 26: 878-883.   DOI
42 Zhang JK, Yang L, Meng GL, Yuan Z, Fan J, Li D, et al. 2013. Protection by salidroside against bone loss via inhibition of oxidative stress and bone-resorbing mediators. PLoS One 8: e57251.   DOI
43 Zhang H, Shen WS, Gao CH, Deng LC, Shen D. 2012. Protective effects of salidroside on epirubicin-induced early left ventricular regional systolic dysfunction in patients with breast cancer. Drugs R. D. 12: 101106.
44 Eudes A, Juminaga D, Baidoo EEK, Collins FW, Keasling JD, Loque D. 2013. Production of hydroxycinnamoyl anthranilates from glucose in Escherichia coli. Microb. Cell Fact. 12: 62.   DOI
45 Chung D, Kim SY, Ahn J-H. 2017. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Sci. Rep. 7: 2578.   DOI
46 Bai Y, Bi H, Zhuang Y, Liu C, Cai T, Liu X, et al. 2014. Production of salidroside in metabolically engineered Escherichia coli. Sci. Rep. 4: 6640.
47 Wei T, Cheng B-Y, Liua J-Z. 2016. Genome engineering Escherichia coli for L-DOPA overproduction from glucose. Sci. Rep. 6: 30080.   DOI
48 An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. 2016. Bacterial synthesis of four hydroxycinnamic acids. Appl. Biol. Chem. 59: 173-179.
49 Murtaza G, Karim S, Akram MR, Khan SA, Azhar S, Mumtaz A, et al. 2014. Caffeic acid phenethyl ester and therapeutic potentials. BioMed Res. Int. 2014: 145342.
50 Huang M-T, Ma W, Yen P, Xie J-G, Han J, Frenkel K, et al. 1996. Inhibitory effects of caffeic acid phenethyl ester (CAPE) on12-0-tetradecanoylphorbol-13-acetate-induced tumor promotion inmouse skin and the synthesis of DNA, RNA and protein in HeLacells. Carcinogcnesis 17: 761-765.   DOI
51 Boudreau LH, Maillet J, LeBlanc LM, Jean-François J, Touaibia M, Flamand N, et al. 2012. Caffeic acid phenethyl ester and its amide analogue are potent inhibitors of leukotriene biosynthesis in human polymorphonuclear leukocytes. PLoS One 7: e31833.   DOI
52 Son S, Lobkowsky EB, Lewis BA. 2001. Caffeic acid phenethyl ester (CAPE): synthesis and X-ray crystallographic analysis. Chem. Pharm. Bull. 49: 236-238.   DOI
53 Berner M, K rug D, B ihlmaier C, V ente A , Muller R , Bechthold A. 2006. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrixespanaensis. J. Bacteriol. 188: 2666-2673.   DOI
54 Choo HJ, Kim EJ, Kim SY, Lee Y, Kim B-G, Ahn J-H. 2018. Microbial synthesis of hydroxytyrosol and hydroxysalidroside. Appl. Bio. Chem. 61: 295-301.   DOI
55 Yu HS, Ma LQ, Zhang JX, Shi GL, Hu YH, Wang YN.2011. Characterization of glycosyltransferases responsible for salidroside biosynthesis in Rhodiolasachalinensis. Phytochemistry 72: 862-870.   DOI
56 Fan B, Chen T, Zhang S, Wu B, He B. 2017. Mining of efficient microbial UDP-glycosyltransferases by motif evolution cross plant kingdom for application in biosynthesis of salidroside. Sci. Rep. 7: 463.   DOI
57 Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, et al. 2015. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 81: 4458-4476.   DOI