• Title/Summary/Keyword: Anti-inflammatory factor

Search Result 1,543, Processing Time 0.024 seconds

Anti-Inflammatory Response in TNFα/IFNγ-Induced HaCaT Keratinocytes and Probiotic Properties of Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474

  • Ji Yeon Lee;Jeong‐Yong Park;Yulah Jeong;Chang‐Ho Kang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1039-1049
    • /
    • 2023
  • Atopic dermatitis (AD) is a chronic inflammatory disease caused by immune dysregulation. Meanwhile, the supernatant of lactic acid bacteria (SL) was recently reported to have anti-inflammatory effects. In addition, HaCaT keratinocytes stimulated by tumor necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) are widely used for studying AD-like responses. In this study, we evaluated the anti-inflammatory effects of SL from lactic acid bacteria (LAB) on TNF-α/IFN-γ-induced HaCaT keratinocytes, and then we investigated the strains' probiotic properties. SL was noncytotoxic and regulated chemokines (macrophage-derived chemokine (MDC) and thymus and activation-regulated chemokine (TARC)) and cytokines (interleukin (IL)-4, IL-5, IL-25, and IL-33) in TNF-α/IFN-γ-induced HaCaT keratinocytes. SL from Lacticaseibacillus rhamnosus MG4644, Lacticaseibacillus paracasei MG4693, and Lactococcus lactis MG5474 decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK). Furthermore, the safety of the three strains was demonstrated via hemolysis, bile salt hydrolase (BSH) activity, and toxicity tests, and the stability was confirmed under simulated gastrointestinal conditions. Therefore, L. rhamnosus MG4644, L. paracasei MG4693, and Lc. lactis MG5474 have potential applications in functional food as they are stable and safe for intestinal epithelial cells and could improve atopic inflammation.

Effect of Thrombin on the TNF-$\alpha$ Induced IL-6 Production in HUVECs (혈관내피세포에서 트롬빈이 TNF-$\alpha$에 의해 유도되는 IL-6에 미치는 영향)

  • Bae, Jong-Sup;Park, Moon-Ki
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Here, we evaluated the effect of thrombin on the interleukin-6 production induced by tumor-necrosis-factor-$\alpha$ in endothelial cells. It is well known that tumor-necrosis-factor-$\alpha$ mediates inflammatory responses by activation of nuclear factor-kappa-B in endothelial cells. Here, we showed that lower concentration of thrombin decreased the production of interleukin-6 induced by tumor-necrosis-factor-$\alpha$ and this inhibitory effect of thrombin on interleukin-6 production was mediated by interacting with protease-activated-receptor-1. In addition, phosphoinositide-3-kinase was also involved the anti-inflammatory responses by lower concentration of thrombin in endothelial cells. These results suggested that lower concentration of thrombin mediated anti-inflammatory responses by interacting with protease-activated-receptor-1 on the cell membrane and phosphoinositide-3-kinase in the cell. These findings will provide the important evidence in the development of new medicine for the treatment of severe sepsis and inflammatory diseases and good clue for understanding unknown mechanisms by which thrombin showed the pro-inflammatory or anti-inflammatory activities in endothelial cells.

Anti-oxidative and Anti-inflammatory Activities of Decaisnea insignis Ethanol Extract (Decaisnea insignis 에탄올 추출물의 항산화 및 항염증 활성)

  • Jin, Kyong-Suk;Lee, Ji Young;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.973-980
    • /
    • 2014
  • This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of Decaisnea insignis ethanol extract (DIEE) were evaluated. First, DIEE possessed potent scavenging activity against 1,1-diphenyl-2-picryl hydrazyl (DPPH), similar to ascorbic acid used as a positive control. Moreover, DIEE inhibited lipopolysaccharide (LPS)- and hydrogen peroxide ($H_2O_2$)-induced reactive oxygen species (ROS) in RAW 264.7 cells. Furthermore, DIEE induced the expression of an anti-oxidative enzyme, heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2), in a dose-dependent manner. The modulation of the HO-1 and Nrf2 expressions might be regulated by mitogen-activated protein kinases (MAPKs) and their upstream signaling pathways. On the other hand, DIEE suppressed LPS-induced nitric oxide (NO) formation without cytotoxicity. The inhibition of the NO formation was the result of the downregulation of inducible NO synthase (iNOS) by DIEE. The suppression of NO and iNOS by DIEE might be modulated by their upstream transcription factors, nuclear factor ${\kappa}B$ ($NF-{\kappa}B$), and activator protein 1 (AP-1) pathways. Taken together, these results provide important new insights that D. insignis possesses anti-oxidative and anti-inflammatory activities. Therefore, it might be utilized as a promising material in the field of nutraceuticals.

Anti-inflammatory Effect of Water Extract from Tuna Heart on Lipopolysaccharide-induced Inflammatory Responses in RAW 264.7 Cells (Lipopolysaccharide로 유도된 RAW 264.7 세포에 대한 참치심장 물 추출물의 항염증 효과)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Ji-Hye;Park, Sun-Hee;Cho, Young-Je;Ahn, Dong-Hyun
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.326-331
    • /
    • 2015
  • The anti-inflammatory effect of tuna heart water extract (THWE) was investigated using lipopolysaccharide-induced inflammatory response in this study. Anti-inflammatory effect was detected by the cell proliferation and the production levels of nitric oxide, pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-$1{\beta}$, and tumor necrosis factor-alpha. As a result, there were no cytotoxic effects on proliferation of macrophages treated with THWE compared to the control. The production of pro-inflammatory cytokines was remarkably suppressed compared with that of the LPS only group. These results suggest that THWE exerts the anti-inflammatory property by inhibiting production of inflammatory factors and may be a potential material for anti-inflammatory therapy.

Anti-oxidative and Anti-inflammatory Activities of Desmodium heterocarpon Extract in RAW 264.7 Cells (RAW 264.7 세포에서 Desmodium heterocarpon 추출물의 항산화 및 항염증 활성)

  • Lee, Su Hyeon;Jin, Kyong-Suk;Son, Yu Ri;Kwon, Hyun Ju;Kim, Byung Woo
    • Journal of Life Science
    • /
    • v.28 no.2
    • /
    • pp.216-222
    • /
    • 2018
  • Desmodium heterocarpon is one of vines belongs to Fabaceae family, mainly distributed in Asian countries such as Korea and Japan. This study was conducted to explore new nutraceutical resources from the plant kingdom possessing biological activities. To fulfill this purpose, the anti-oxidative and anti-inflammatory activities of D. heterocarpon ethanol extract (DHEE) were evaluated by 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity assay, reactive oxygen species (ROS) scavenging activity assay, nitric oxide (NO) inhibitory activity assay, and the analysis of related protein expressions by Western blot hybridization. DHEE exhibited potent anti-oxidative activity as confirmed by DPPH radical scavenging capacity against DPPH similar with ascorbic acid, a well-known anti-oxidative agent, used as a positive control. DHEE also effectively suppressed hydrogen peroxide ($H_2O_2$)-induced ROS on RAW 264.7 murine macrophage cells. Furthermore, DHEE induced the expression of the anti-oxidative enzyme heme oxygenase 1 (HO-1), and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2) as a dose dependent manner. DHEE inhibited lipopolysaccharide (LPS) induced nitric oxide (NO) formation as a consequence of inducible NO synthase (iNOS) down regulation. Taken together, these results suggest that DHEE has anti-oxidative and anti-inflammatory activities and thus appears to be useful sources as potential anti-oxidant and anti-inflammatory agents. The identification of active compounds that confer biological activities of DHEE might be needed.

The pepsinolytic hydrolysate from Johnius belengerii frame inhibited LPS-stimulated production of pro-inflammatory mediators via the inactivating of JNK and NF-κB pathways in RAW 264.7 macrophages

  • Heo, Seong-Yeong;Ko, Seok-Chun;Jung, Won-Kyo
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.14.1-14.8
    • /
    • 2018
  • The objective of this study was to investigate the anti-inflammatory effects of the pepsinolytic hydrolysate from the fish frame, Johnius belengerii, on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The J. belengerii frame hydrolysate (JFH) significantly suppressed nitric oxide (NO) secretion on LPS-stimulated RAW264.7 macrophages. Moreover, the JFH markedly inhibited the levels of protein and mRNA expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, the LPS-stimulated mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, and IL-6 was downregulated when cells were cultured with the JFH. The JFH significantly reduced the phosphorylation of c-Jun N-terminal kinase (JNK) and the translocation of nuclear factor-kappa B ($NF-{\kappa}B$) in macrophages. As the result, the JFH has the potential anti-inflammatory activity via blocking the JNK and $NF-{\kappa}B$ signal pathways.

The Beneficial Effect of Platycodon grandiflorum on DSS-induced Colitis through Regulation of HIF-1α in Mice

  • Yang, Mi-Ok;Myung, Noh-Yil
    • Korean Journal of Plant Resources
    • /
    • v.35 no.3
    • /
    • pp.391-398
    • /
    • 2022
  • Ulcerative colitis (UC) is a typical inflammatory colon disorder. Platycodon grandiflorum (PG) is known to exert various beneficial effects including anti-oxidative and anti-bacterial properties and improvements in liver function. However, the improving effect and mechanism of PG on intestinal inflammation are not fully understood. The present research was designed to investigate the effect of PG on the clinical signs of DSS-induced colitis in mice. The ameliorative effects of PG on inflammatory cytokine expression and the activation of hypoxia-inducible-factor (HIF)-1α in DSS-treated colon tissue were also determined. Our results showed that mice treated with DSS displayed the main clinical symptoms of colitis, including weight loss, bloody stools, decrease in colon length and diarrhea and PG treatment significantly improved the clinical features induced by DSS in mice. PG inhibited the increase in the levels of inflammatory cytokines caused by DSS in colon tissues. We also showed that the anti-inflammatory mechanism of PG involved suppressing the activation of HIF-1α in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from PG for UC treatment.

The Anti-inflammatory Mechanism of Blueberry is through Suppression of NF-kB/Caspase-1 Activation in LPS-induced RAW264.7 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • Korean Journal of Plant Resources
    • /
    • v.37 no.3
    • /
    • pp.256-262
    • /
    • 2024
  • Blueberry (BB), fruit of Vacciniumi, has been hailed as an antioxidant superfood. BB is a rich source of vitamins, minerals, flavonoids, phenolic acids and known to have a variety of pharmacological actions. The purpose of this work is to clarify the anti-inflammatory mechanism of BB in lipopolysaccharide (LPS)-activated RAW264.7 macrophage. We explored the effects of BB on the production of inflammatory cytokines, prostaglandin E2 (PGE2) and expression of cyclooxygenase (COX)-2 in LPS-activated RAW264.7 macrophage. Moreover, to investigate the molecular mechanisms by BB, we evaluated whether BB modulate nuclear factor-kappa B (NF)-kB pathway and caspase- 1 activation. The findings of this work demonstrated that BB alleviated the LPS-enhanced inflammatory cytokines and PGE2, as well as COX-2 levels. Additionally, we demonstrated that the anti-inflammatory mechanism of BB occurs due to the attenuation of IκB-α degradation, NF-kB translocation and caspase-1 activation. Conclusively, these findings provide evidence that BB may be useful agents in the treatment of inflammation.

Anticancer and Anti-Inflammatory Activity of Probiotic Lactococcus lactis NK34

  • Han, Kyoung Jun;Lee, Na-Kyoung;Park, Hoon;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1697-1701
    • /
    • 2015
  • The anticancer and anti-inflammatory activities of probiotic Lactococcus lactis NK34 were demonstrated. Treatment of cancer cells such as SK-MES-1, DLD-1, HT-29, LoVo, AGS, and MCF-7 cells with 106 CFU/well of L. lactis NK34 resulted in strong inhibition of proliferation (>77% cytotoxicity, p < 0.05). The anti-inflammatory activity of L. lactis NK34 was also demonstrated in lipopolysaccharide-induced RAW 264.7 cells, where the production of nitric oxide and proinflammatory cytokines (tumor necrosis factor-α, interleukin-18, and cyclooxygenase-2) was reduced. These results suggest that L. lactis NK34 could be used as a probiotic microorganism to inhibit the proliferation of cancer cells and production of proinflammatory cytokines.

Anti-Inflammatory Effect of Carex scabrifolia Steud. Extract in RAW264.7 Cells

  • Joong Hyun Shim
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.3
    • /
    • pp.354-360
    • /
    • 2022
  • This research was designed to evaluate the possible anti-inflammatory effects of Carex scabrifolia Steud. extract using RAW264.7 cells. The assessments of these effects were based on cell viability assay, mRNA expression levels of interleukin-1 alpha (IL-1α), interleukin-1 beta (IL-1β), IL-6, tumor necrosis factor alpha (TNFα), and levels of nitric oxide (NO)/prostaglandin E2 (PGE2) production. Quantitative real-time polymerase chain reaction showed that treatment with C. scabrifolia Steud. extract decreased the mRNA levels of iNOS, COX2, IL-1α, IL-1β, IL-6, and TNFα. Furthermore, from the production levels of PGE2/NO, it can be inferred that C. scabrifolia Steud. extract exhibited anti-inflammatory properties. These results suggest that C. scabrifolia Steud. extract contains anti-inflammatory compound(s), and consequently, that it may have applications as a potent cosmeceutical material.