• 제목/요약/키워드: Anti-cancer mechanism

검색결과 523건 처리시간 0.029초

간암 세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 성장 억제 효과 (Anti-Growth Effect of Kaempferol, a Major Component of Polygonati Rhizoma, in Hepatocarcinoma Cells)

  • 주예진;정지천
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.519-526
    • /
    • 2012
  • Recently, herbal flavonoids have been implicated for anti-cancer therapy. Flavonoids as a commonly known for their anti-oxidant activity, are contained in the herbal medicine as well as root of plants, vegetables, fruits, grains, tea, and wine. Kaempferol, a component of Polygonati rhizoma, a member of the herbal flavonoids, has been studied for anti-hypercholesterol, anti-hypertension and anti-diabetes. It is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. Here, we investigated the molecular mechanism underlying kaempferol-induced anti-cancer effects using the human liver cancer cell lines, Hep3B, HepG2, and Sk-Hep-1, and human Chang liver cell as a control. As shown by the FACS analysis, measurement of caspase activity, DAPI and trypan blue staining, and DNA fragmentation assay, kaempferol induced apoptosis in the liver cancer cells with the greater potential in Hep3B cells than other liver cancer cells. In addition, we performed microarray analysis to profile the genome-wide mRNA expression regulated by kaempferol. Many of the apoptosis-related genes were significantly induced in kaempferol-treated Hep3B cells, in particular, the genes associated with MAPK cascade. Additionally, kaempferol induced the mRNA expression of genes involved in MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathway, which are all known to trigger apoptosis. Overall, our data suggest that kaempferol has anti-liver cancer effects by inducing apoptosis through the MKK7-JNK cascade, MKK3-p38 cascade, and caspase signaling pathways.

에스트로겐 수용체 양성 MCF-7 유방암 세포주에 대한 costunolide의 항암효과 (Anti-cancer Effects of Costunolide in Estrogen Receptor Positive MCF-7 Breast Cancer Cells)

  • 김운지;최윤경;우상미;박남규;정혜인;김용국;신용철;고성규
    • 동의생리병리학회지
    • /
    • 제27권3호
    • /
    • pp.306-312
    • /
    • 2013
  • Costunolide ($C_{15}H_{20}O_2$) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects (anti-viral, anti-fungal, and anti-inflammatory) according to previous reports. However, the anti-cancer effects of Costunolide and its mechanism of actions are not well known in estrogen receptor positive breast cancer. In this study, we observed that costunolide suppresses cell growth in estrogen receptor positive MCF-7 breast cancer cells as shown by MTT assay and soft agar colony formation assay. To examine the mechanism by which costunolide inhibits MCF-7 cell growth, we performed FACS analysis. We found that costunolide induced G2/M and S cell cycle arrest, and regulated cycle-related protein expression. In addition, costunolide inhibited ERK signaling pathway and induced autophagy. Therefore, costunolide might be a good and useful chemotherapy agent for estrogen receptor positive breast cancer patients.

Fenbendazole의 항암활성에서 활성산소종의 관련성 (Involvement of reactive oxygen species in the anti-cancer activity of fenbendazole, a benzimidazole anthelmintic)

  • 한용;주홍구
    • 대한수의학회지
    • /
    • 제60권2호
    • /
    • pp.79-83
    • /
    • 2020
  • Fenbendazole (FBZ) is a benzimidazole anthelmintic that has been widely used in treatments for gastrointestinal parasites including pinworms and roundworms in animals. Recently, some studies demonstrated that FBZ has anti-cancer effects related to disruption of microtubule polymerization. In this study, we investigated whether FBZ has anti-cancer activity in HL-60 cells, a human leukemia cell line, and assessed its relationship with the production of reactive oxygen species (ROS). FBZ treatment at 0.25-1 μM significantly decreased the metabolic activity of HL-60 cells. The mitochondrial membrane potential of FBZ-treated HL-60 cells decreased in a concentration-dependent manner. Apoptosis analysis using annexin V-FITC/propidium iodide staining demonstrated that 1 μM FBZ increased the percentages of cells in apoptosis and necrosis. In addition, Hoechst 33342 staining showed the presence of broken nuclei in HL-60 cells treated with 0.5 and 1 μM FBZ. To investigate the anti-cancer mechanism of FBZ, HL-60 cells were treated with FBZ in the absence or presence of N-acetyl cysteine (NAC), an inhibitor of ROS production. NAC significantly recovered the decreased metabolic activity of HL-60 induced by 0.5 and 1 μM FBZ treatments. This study provides evidence that FBZ has anti-cancer activity in HL-60 cells provided, in part, via ROS production.

The Role of Complement in the Immunologic Microenvironment of Tumor Cells: Potential Therapeutic Targets

  • Jo, Kyeong Beom;Snape, Alison
    • 한국미생물·생명공학회지
    • /
    • 제44권4호
    • /
    • pp.420-431
    • /
    • 2016
  • The complement system comprises a set of essential molecules that bridge the innate and adaptive immune responses. Research has focused on how the complement system's destructive mechanism could potentially be harnessed for cancer treatment. However, cancer subverts the complement system to avoid immunosurveillance. In addition, a complement-triggered biological mechanism that contributes to cancer growth has been identified. Thus, drugs should be designed to homeostatically maintain a normal concentration of complement. This review explores three types of complement-related anti-cancer drugs: therapeutic antibodies, complement inhibitory drugs, and anti-complement regulatory drugs.

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung;Kim, Hyun-Kyung;Hong, Yong-Kil;Joe, Young Ae
    • Biomolecules & Therapeutics
    • /
    • 제27권1호
    • /
    • pp.117-125
    • /
    • 2019
  • Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

Harmine의 Notch 신호전달 조절에 의한 유방암세포주 이동 및 침윤 억제 효과 (Inhibitory Effects of Harmine on Migration and Invasion of Human Breast Cancer Cells by Regulating Notch Signaling)

  • 윤지은
    • 생약학회지
    • /
    • 제49권4호
    • /
    • pp.285-290
    • /
    • 2018
  • Harmine, a beta-carboline alkaloid isolated from the seeds of Peganum harmala has been reported as a promising drug candidate for cancer therapy. However, the effect of harmine on breast cancer remains still unclear. In this study, the effect of harmine on the cell proliferation, migration, and invasion of breast cancer MDA-MB231 cells and the underlying mechanism were investigated. The results indicated that harmine inhibited the proliferation MDA-MB231 cells in a dose-dependent manner and markedly suppressed migration and invasion of MDA-MB231 cells. The mechanism involved in part through Notch signaling. The Notch activity was significantly inhibited by harmine treatment and harmine suppressed the expression of Jagged1 which is a key ligand to activate Notch signaling. These findings suggest a novel mechanism of harmine on anti-cancer activity and harmine may act as a potential therapeutic drug for breast cancer treatment.

Inhibition of Wnt Signaling by Silymarin in Human Colorectal Cancer Cells

  • Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • 제24권4호
    • /
    • pp.380-386
    • /
    • 2016
  • Silymarin from milk thistle (Silybum marianum) has been reported to show an anti-cancer activity. In previous study, we reported that silymarin induces cyclin D1 proteasomal degradation through NF-${\kappa}B$-mediated threonine-286 phosphorylation. However, mechanism for the inhibition of Wnt signaling by silymarin still remains unanswered. Thus, we investigated whether silymarin affects Wnt signaling in human colorectal cancer cells to elucidate the additional anti-cancer mechanism of silymarin. Transient transfection with a TOP and FOP FLASH luciferase construct indicated that silymarin suppressed the transcriptional activity of ${\beta}$-catenin/TCF. Silymarin treatment resulted in a decrease of intracellular ${\beta}$-catenin protein but not mRNA. The inhibition of proteasome by MG132 and $GSK3{\beta}$ inhibition by SB216763 blocked silymarin-mediated downregulation of ${\beta}$-catenin. In addition, silymarin increased phosphorylation of ${\beta}$-catenin and a point mutation of S33Y attenuated silymarin-mediated ${\beta}$-catenin downregulation. In addition, silymarin decreased TCF4 and increased Axin expression in both protein and mRNA level. From these results, we suggest that silymarin-mediated downregulation of ${\beta}$-catenin and TCF4 may result in the inhibition of Wnt signaling in human colorectal cancer cells.

폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능 (Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells)

  • 정영석;정지천
    • 동의생리병리학회지
    • /
    • 제25권5호
    • /
    • pp.816-822
    • /
    • 2011
  • Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

KAT8/MOF-Mediated Anti-Cancer Mechanism of Gemcitabine in Human Bladder Cancer Cells

  • Zhu, Huihui;Wang, Yong;Wei, Tao;Zhao, Xiaoming;Li, Fuqiang;Li, Yana;Wang, Fei;Cai, Yong;Jin, Jingji
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.184-194
    • /
    • 2021
  • Histone acetylation is a well-characterized epigenetic modification controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). Imbalanced histone acetylation has been observed in many primary cancers. Therefore, efforts have been made to find drugs or small molecules such as HDAC inhibitors that can revert acetylation levels to normal in cancer cells. We observed dose-dependent reduction in the endogenous and exogenous protein expression levels of KAT8 (also known as human MOF), a member of the MYST family of HATs, and its corresponding histone acetylation at H4K5, H4K8, and H4K16 in chemotherapy drug gemcitabine (GEM)-exposed T24 bladder cancer (BLCA) cells. Interestingly, the reduction in MOF and histone H4 acetylation was inversely proportional to GEM-induced γH2AX, an indicator of chemotherapy drug effectiveness. Furthermore, pGL4-MOF-Luc reporter activities were significantly inhibited by GEM, thereby suggesting that GEM utilizes an MOF-mediated anti-BLCA mechanism of action. In the CCK-8, wound healing assays and Transwell® experiments, the additive effects on cell proliferation and migration were observed in the presence of exogenous MOF and GEM. In addition, the promoted cell sensitivity to GEM by exogenous MOF in BLCA cells was confirmed using an Annexin V-FITC/PI assay. Taken together, our results provide the theoretical basis for elucidating the anti-BLCA mechanism of GEM.

활혈화어법을 응용한 한방 항암처방 개발에 관한 연구 (Study of Developmental New Anti-cancer Prescription from Herbs of ‘the activation of blood and the elimination of blood stasis’)

  • 우원홍;김용수;전병훈;정우열
    • 동의생리병리학회지
    • /
    • 제16권3호
    • /
    • pp.409-420
    • /
    • 2002
  • At once Medicine of East and West have the same purpose in treating, but there is a difference between the method of medical care and the view/slant on a disease each other. In the East Medicine, It is very difficult to explain the concept of Hwalhyulhwau but it is one of the way to cure cancer for long time. Be based on the theory of the East Medicine, research single medicine's anti-cancer effect among the natural products that has anti-cancer function. Moreover, for the purpose of finding new way to cure and prevent against cancer, we, the researchers, divided into four groups for this research: Group one: survey new substance with anti-cancer effects from natural products. Group two: research of anti-cancer mechanism through the experimental studies. Group three: research of immune responses in anti-canncer effects from natural products. Group four: research of the inhibitory effect on metastasis through the anti-angiogenesis. From the above results, we blended efficacious medidcines against cancer and made new prescriptions of Soam-I and Soam-II. Now, we are studying on these new prescriptions. We speculate that Soam-I and Soam-II may be used for a new conceptional anticancer therapy.