Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells

폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능

  • Jeong, Young-Seok (Department Internal Medicine, College of Korean Medicine, Dongguk University) ;
  • Jeong, Ji-Cheon (Department Internal Medicine, College of Korean Medicine, Dongguk University)
  • 정영석 (동국대학교 한의과대학 내과학교실) ;
  • 정지천 (동국대학교 한의과대학 내과학교실)
  • Received : 2001.08.29
  • Accepted : 2011.10.07
  • Published : 2011.10.25

Abstract

Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

Keywords

References

  1. Preetha Anand, Ajaikumar B. Kunnumakara, Chitra Sundaram, Kuzhuvelil B. Harikumar, Sheeja T. Tharakan, Oiki S. Lai, Bokyung Sung and Bharat B. Aggarwal: Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research. 25(9):2097-2116, 2008. https://doi.org/10.1007/s11095-008-9661-9
  2. Cho, G.J. Current therapy of lung cancer. Korean Journal of Medicine 62(2):600-607, 2002.
  3. Seo, W.G., Jeong, J.C. Effects of Trichosanthes kirilowii Maxim and Scutellaria baicalensis Georgi on IL-1β-induced GnT-Ⅲ and Ⅴ in Melanoma B-16. J. of Kor. Oriental Oncology. 5(1):103-118, 1999.
  4. Lee, H., Kwon, Y., Lee, J.H., Kim, J., Shin, M.K., Kim, S.H. and Bae, H. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J Immunol. 185: 6698-6705, 2010. https://doi.org/10.4049/jimmunol.1001373
  5. Lee, H.J., Lee, E.O., Rhee, Y.H., Ahn, K.S., Li, G.X., Jiang, C., Lu, J. and Kim, S.H. An oriental herbal cocktail, ka-mi-kae-kyuk-tang, exerts anti-cancer activities by targeting angiogenesis, apoptosis and metastasis. Carcinogenesis. 27: 2455-2463, 2006. https://doi.org/10.1093/carcin/bgl104
  6. Seo, I., Kim, S.H., Lee, J.E., Jeong, S.J., Kim, Y.C., Ahn, K.S. and Lu, J. Kamikaekyuktang oriental herbal cocktail attenuates cyclophosphamide-induced leukopenia side effects in mouse. Immunopharmacol Immunotoxicol. 1-9, 2011.
  7. Bae, O.S., Yoo, Y.M., Lee, S.G. Pro-apoptptic effect of Mori Cortex Radicis in A459 lung cancer cells. Kor. J. Oriental Physiology and Pathology. 19(6):1563-1567, 2005.
  8. Yu, B.G., Kim, M.D., Hwang, T.J., Yoo, Y.M., Lee, S.G. Apoptotic effect of Junglyeokdaejosape-tang and Junglyeok-tang on A459 lung cancer cells. Kor. J. Oriental Physiology and Pathology. 19(5):1204-1212, 2005.
  9. Lee, S.I. Herbs. Seoul, Medical Herbal Co, pp 128-129, 1983.
  10. Park, J.S., Rho, H.S., Kim. D.H., Chang, I.S. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 54(8):2951-2956, 2006. https://doi.org/10.1021/jf052900a
  11. Singh, R., Singh, B., Singh, S., Kumar, N., Kumar, S., Arora, S. Anti-free radical activities of kaempferol isolated from Acacia nilotica (L.) Willd. Ex. Del. Toxicol In Vitro. 22(8):1965-1970, 2008. https://doi.org/10.1016/j.tiv.2008.08.007
  12. Gabrielska J, Soczynska-Kordala M, Przestalski S. Antioxidative effect of kaempferol and its equimolar mixture with phenyltin compounds on UV-irradiated liposome membranes. J Agric Food Chem. 53(1):76-83, 2005. https://doi.org/10.1021/jf0401120
  13. Parveen, Z., Deng, Y., Saeed, M.K., Dai, R., Ahamad, W, Yu Y.H. Antiinflammatory and analgesic activities of Thesium chinense Turcz extracts and its major flavonoids, kaempferol and kaempferol-3-O-glucoside. Yakugaku Zasshi. 127(8):1275-1279, 2007. https://doi.org/10.1248/yakushi.127.1275
  14. Li, W., Du, B., Wang, T., Wang, S., Zhang, J. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chem Biol Interact. 177(2):121-127, 2009. https://doi.org/10.1016/j.cbi.2008.10.048
  15. Nguyen, T.T., Tran, E., Ong, C.K., Lee, S.K., Do, P.T., Huynh, T.T., Nguyen, T.H., Lee, J.J., Tan, Y., Ong, C.S., et al. Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J Cell Physiol. 197: 110-121, 2003. https://doi.org/10.1002/jcp.10340
  16. Luo, H., Rankin, G.O., Li, Z., Depriest, L., and Chen, Y.C. Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem. 128: 513-519, 2011. https://doi.org/10.1016/j.foodchem.2011.03.073
  17. Jeong, J.C., Kim, M.S., Kim, T.H., Kim, Y.K. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem Res. 34: 991-1001, 2009. https://doi.org/10.1007/s11064-008-9868-5
  18. Spencer, J.P. Flavonoids: modulators of brain function? Br J Nutr. 99: ES60-77, 2008.
  19. Manach, C., Scalbert, A., Morand, C., Remesy, C., Jimenez, L. Polyphenols. food sources and bioavailability. Am J Clin Nutr. 79(5):727-747, 2004. https://doi.org/10.1093/ajcn/79.5.727
  20. Miura, T., Kato, A., Usami, M., Kadowaki, S., Seino, Y. Effect of polygonati rhizoma on blood glucose and facilitative glucose transporter isoform 2 (GLUT2) mRNA expression in Wistar fatty rats. Biol Pharm Bull. 18(4):624-625, 1995. https://doi.org/10.1248/bpb.18.624
  21. Kato, A., Miura, T. Hypoglycemic activity of polygonati rhizoma in normal and diabetic mice. Biol Pharm Bull. 16(11):1118-1120, 1993. https://doi.org/10.1248/bpb.16.1118
  22. Roh, S.W., Kim, J.B. Effects of Polygonati Rhizoma on the Diet-induced Hyperlipidemia in Rats. Korean J Oriental Physiology & Pathology. 22(5):1147-1151, 2008.
  23. Kato. A., Miura, T., Yano, H., Masuda, K., Ishida, H., Seino, Y. Suppressive effects of polygonati rhizoma on hepatic glucose output, GLUT2 mRNA expression and its protein content in rat liver. Endocr J. 41(2):139-144, 1994. https://doi.org/10.1507/endocrj.41.139
  24. Jang, J.S., Jeong, J.C. Anti-adiposgenic effect of Kaempferol, a component of polygonati rhizoma. J Korean Oriental Med. 31(2):158-166, 2010.
  25. Lopez-Sanchez, C., Martin-Romero, F.J., Sun. F., Luis, L., Samhan-Arias, A.K., Garcia-Martinez, V., et al. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Res. 1182: 123-137, 2007. https://doi.org/10.1016/j.brainres.2007.08.087
  26. Middleton, E. Jr., Kandaswami, C., Theoharides, T.C. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 52(4):673-751, 2000.
  27. Fang, X.K., Gao, J., Zhu, D.N. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 82(11-12):615-622, 2008. https://doi.org/10.1016/j.lfs.2007.12.021
  28. Lee, C.J., Lee, J.H., Seok, J.H., Hur, G.M., Park, J.J., Bae, S., Lim, J.H., Park, Y.C. Effects of betaine, coumarin and flavonoids on mucin release from cultured hamster tracheal surface epithelial cells. Phytother Res. 18(4):301-305, 2004. https://doi.org/10.1002/ptr.1433
  29. Miean, K.H., Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 49(6):3106-3112, 2001. https://doi.org/10.1021/jf000892m
  30. Park JS, Rho HS, Kim DH, Chang IS. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem. 54(8):2951-2956, 2006. https://doi.org/10.1021/jf052900a