Anti-cancer Effects of Costunolide in Estrogen Receptor Positive MCF-7 Breast Cancer Cells

에스트로겐 수용체 양성 MCF-7 유방암 세포주에 대한 costunolide의 항암효과

  • Kim, Woon Ji (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Choi, Youn Kyung (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Woo, Sang Mi (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Park, Nam Gyu (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Jung, Hye In (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Kim, Yong Gook (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Shin, Yong Cheol (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University) ;
  • Ko, Seong Gyu (Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University)
  • 김운지 (경희대학교 한의과대학 예방의학교실) ;
  • 최윤경 (경희대학교 한의과대학 예방의학교실) ;
  • 우상미 (경희대학교 한의과대학 예방의학교실) ;
  • 박남규 (경희대학교 한의과대학 예방의학교실) ;
  • 정혜인 (경희대학교 한의과대학 예방의학교실) ;
  • 김용국 (경희대학교 한의과대학 예방의학교실) ;
  • 신용철 (경희대학교 한의과대학 예방의학교실) ;
  • 고성규 (경희대학교 한의과대학 예방의학교실)
  • Received : 2012.11.26
  • Accepted : 2013.05.28
  • Published : 2013.06.25

Abstract

Costunolide ($C_{15}H_{20}O_2$) is a sesquiterpene lactone that was isolated from many herbal medicines and it has diverse effects (anti-viral, anti-fungal, and anti-inflammatory) according to previous reports. However, the anti-cancer effects of Costunolide and its mechanism of actions are not well known in estrogen receptor positive breast cancer. In this study, we observed that costunolide suppresses cell growth in estrogen receptor positive MCF-7 breast cancer cells as shown by MTT assay and soft agar colony formation assay. To examine the mechanism by which costunolide inhibits MCF-7 cell growth, we performed FACS analysis. We found that costunolide induced G2/M and S cell cycle arrest, and regulated cycle-related protein expression. In addition, costunolide inhibited ERK signaling pathway and induced autophagy. Therefore, costunolide might be a good and useful chemotherapy agent for estrogen receptor positive breast cancer patients.

Keywords

References

  1. Edwards, B.K., Brown, M.L., Wingo, P.A., et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment, J Natl Cancer Inst 97(19):1407-1427, 2005. https://doi.org/10.1093/jnci/dji289
  2. Park, S., Bae, J., Nam, B.H., et al. Aetiology of cancer in Asia, Asian Pac J Cancer Prev 9(3):371-380, 2008.
  3. Ziegler, R.G., Anderson, W.F., Gail, M.H. Increasing breast cancer incidence in China: the numbers add up, J Natl Cancer Ins 100(19):1339-1341, 2008. https://doi.org/10.1093/jnci/djn330
  4. Hanahan, D., Weinberg, R.A. Hallmarks of cancer: the next generation, Cell 144(5):646-674, 2011. https://doi.org/10.1016/j.cell.2011.02.013
  5. Lopez-Saez, J.F., de, la., Torre, C., et al. Cell proliferation and cancer, Histol Histopathol 13(4):1197-1214, 1998.
  6. Nasmyth, K., Viewpoint: putting the cell cycle in order, Science 274(5293):1643-1645, 1996. https://doi.org/10.1126/science.274.5293.1643
  7. Vermeulen, K., Van Bockstaele, D.R., Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer, Cell Prolif 36(3):131-149, 2003. https://doi.org/10.1046/j.1365-2184.2003.00266.x
  8. Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K., et al. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Annu Rev Biochem 73: 39-85, 2004. https://doi.org/10.1146/annurev.biochem.73.011303.073723
  9. Ruas, M., Peters, G. The p16INK4a/CDKN2A tumor suppressor and its relatives, Biochim Biophys Acta 1378(2):F115-F177, 1998.
  10. Sherr, C.J., Roberts, J.M. CDK inhibitors: positive and negative regulators of G1-phase progression, Genes Dev 13(12):1501-1512, 1999. https://doi.org/10.1101/gad.13.12.1501
  11. Edinger, A.L., Thompson, C.B. Death by design: apoptosis, necrosis and autophagy, Curr Opin Cell Biol 16(6):663-669, 2004. https://doi.org/10.1016/j.ceb.2004.09.011
  12. Meijer, A.J., Codogno, P. Regulation and role of autophagy in mammalian cells, Int J Biochem Cell Biol 36(12):2445-2462, 2004. https://doi.org/10.1016/j.biocel.2004.02.002
  13. Gozuacik, D., Kimchi, A. Autophagy as a cell death and tumor suppressor mechanism, Oncogene 23(16):2891-2906, 2004. https://doi.org/10.1038/sj.onc.1207521
  14. Rubinsztein, D.C., Gestwicki, J.E., Murphy, L.O., et al. Potential therapeutic applications of autophagy, Nat Rev Drug Discov 6(4):304-312, 2007. https://doi.org/10.1038/nrd2272
  15. Tolkovsky, A.M. Autophagy thwarts muscle disease, Nat Med 16(11):1188-1190, 2010. https://doi.org/10.1038/nm1110-1188
  16. Deretic, V. Autophagy in infection, Curr Opin Cell Biol 22(2):252-262, 2010. https://doi.org/10.1016/j.ceb.2009.12.009
  17. Rubinsztein, D.C., Marino, G., Kroemer, G. Autophagy and aging, Cell 146(5):682-695, 2011. https://doi.org/10.1016/j.cell.2011.07.030
  18. Cao, X., Liu, B., Cao, W., et al. Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells, Chin J Cancer Res 25(2):212-222, 2013.
  19. Yim, N.H., Jung, Y.P., Kim, A., et al. Oyaksungisan, a Traditional Herbal Formula, Inhibits Cell Proliferation by Induction of Autophagy via JNK Activation in Human Colon Cancer Cells, Evid Based Complement Alternat Med 2013: 231874, 2013.
  20. Lee, M.G., Lee, K.T., Chi, S.G., et al. Costunolide induces apoptosis by ROS-mediated mitochondrial permeability transition and cytochrome C release, Biol Pharm Bull 24(3):303-306, 2001. https://doi.org/10.1248/bpb.24.303
  21. Mondranondra, I.O., Che, CT., Rimando, A.M., et al. Sesquiterpene lactones and other constituents from a cytotoxic extract of Michelia floribunda, Pharm Res 7(12):1269-1272, 1990. https://doi.org/10.1023/A:1015937921880
  22. el-Feraly, F.S., Chan, Y.M., Isolation and characterization of the sesquiterpene lactones costunolide, parthenolide, costunolide diepoxide, santamarine, and reynosin from Magnolia grandiflora L, J Pharm Sci 67(3):347-350, 1978. https://doi.org/10.1002/jps.2600670319
  23. Park, H.J., Kwon, S.H., Han, Y.N., et al. Apoptosis-Inducing costunolide and a novel acyclic monoterpene from the stem bark of Magnolia sieboldii, Arch Pharm Res 24(4):342-348, 2001. https://doi.org/10.1007/BF02975104
  24. De, Marino, S., Borbone, N., Zollo, F., et al. New sesquiterpene lactones from Laurus nobilis leaves as inhibitors of nitric oxide production, Planta Med 71(8):706-710, 2005. https://doi.org/10.1055/s-2005-864191
  25. Kassuya, C.A., Cremoneze, A., Barros, L.F., et al. Antipyretic and anti-inflammatory properties of the ethanolic extract, dichloromethane fraction and costunolide from Magnolia ovata (Magnoliaceae), J Ethnopharmacol 124(3):369-376, 2009. https://doi.org/10.1016/j.jep.2009.06.003
  26. Chen, H.C., Chou, C.K., Lee, S.D., et al. Active compounds from Saussurea lappa Clarks that suppress hepatitis B virus surface antigen gene expression in human hepatoma cells, Antiviral Res 27(1-2):99-109, 1995. https://doi.org/10.1016/0166-3542(94)00083-K
  27. Wedge, D.E., Galindo, J.C., Macias, F.A. Fungicidal activity of natural and synthetic sesquiterpene lactone analogs, Phytochemistry 53(7):747-757, 2000. https://doi.org/10.1016/S0031-9422(00)00008-X
  28. Chen, C.N., Huang, H.H., Wu, C.L., et al. Isocostunolide, a sesquiterpene lactone, induces mitochondrial membrane depolarization and caspase-dependent apoptosis in human melanoma cells, Cancer Lett 246(1-2):237-252, 2007. https://doi.org/10.1016/j.canlet.2006.03.004
  29. Mori, H., Kawamori, T., Tanaka, T., et al. Chemopreventive effect of costunolide, a constituent of oriental medicine, on azoxymethane-induced intestinal carcinogenesis in rats, ancer Lett 83(1-2):171-175, 1994. https://doi.org/10.1016/0304-3835(94)90315-8
  30. Choi, J.H., Ha, J., Park, J.H., et al. Costunolide triggers apoptosis in human leukemia U937 cells by depleting intracellular thiols, Jpn J Cancer Res 93(12):1327-1333, 2002. https://doi.org/10.1111/j.1349-7006.2002.tb01241.x
  31. Hsu, J.L., Pan, S.L., Ho, Y.F., et al. Costunolide induces apoptosis through nuclear calcium2+ overload and DNA damage response in human prostate cancer, J Urol 185(5):1967-1974, 2011. https://doi.org/10.1016/j.juro.2010.12.091
  32. Choi, Y.K., Seo, H.S., Choi, H.S., et al. Induction of Fas-mediated extrinsic apoptosis, p21WAF1-related G2/M cell cycle arrest and ROS generation by costunolide in estrogen receptor-negative breast cancer cells, MDA-MB-231, Mol Cell Biochem 363(1-2):119-128, 2012. https://doi.org/10.1007/s11010-011-1164-z
  33. Jeong, S.J., Itokawa, T., Shibuya, M., et al. Costunolide, a sesquiterpene lactone from Saussurea lappa, inhibits the VEGFR KDR/Flk-1 signaling pathway, Cancer Lett 187(1-2):129-133, 2002. https://doi.org/10.1016/S0304-3835(02)00361-0
  34. Hoshino, R., Chatani, Y., Yamori, T., et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors, Oncogene, 18(3):813-822, 1999. https://doi.org/10.1038/sj.onc.1202367
  35. Lewis, T.S., Shapiro, P.S., Ahn, N.G. Signal transduction through MAP kinase cascades, Adv Cancer Res 74: 49-139, 1998. https://doi.org/10.1016/S0065-230X(08)60765-4
  36. Paglin, S., Hollister, T., Delohery, T., et al. A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles, Cancer Res 61(2):439-444, 2001.
  37. Kanzawa, T., Kondo, Y., Ito, H., et al. Induction of autophagic cell death in malignant glioma cells by arsenic trioxide, Cancer Res 63(9):2103-2018, 2003.
  38. Pyo, J.O., Nah, J., Jung, Y.K. Molecules and their functions in autophagy, Exp Mol Med 44(2):73-80, 2012. https://doi.org/10.3858/emm.2012.44.2.029