DOI QR코드

DOI QR Code

Autophagy Is a Potential Target for Enhancing the Anti-Angiogenic Effect of Mebendazole in Endothelial Cells

  • Sung, So Jung (Cancer Research Institute, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hyun-Kyung (Cancer Research Institute, College of Medicine, The Catholic University of Korea) ;
  • Hong, Yong-Kil (Cancer Research Institute, College of Medicine, The Catholic University of Korea) ;
  • Joe, Young Ae (Cancer Research Institute, College of Medicine, The Catholic University of Korea)
  • Received : 2018.11.16
  • Accepted : 2018.11.29
  • Published : 2019.01.01

Abstract

Mebendazole (MBZ), a microtubule depolymerizing drug commonly used for the treatment of helminthic infections, has recently been noted as a repositioning candidate for angiogenesis inhibition and cancer therapy. However, the definite anti-angiogenic mechanism of MBZ remains unclear. In this study, we explored the inhibitory mechanism of MBZ in endothelial cells (ECs) and developed a novel strategy to improve its anti-angiogenic therapy. Treatment of ECs with MBZ led to inhibition of EC proliferation in a dose-dependent manner in several culture conditions in the presence of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) or FBS, without selectivity of growth factors, although MBZ is known to inhibit VEGF receptor 2 kinase. Furthermore, MBZ inhibited EC migration and tube formation induced by either VEGF or bFGF. However, unexpectedly, treatment of MBZ did not affect FAK and ERK1/2 phosphorylation induced by these factors. Treatment with MBZ induced shrinking of ECs and caused G2-M arrest and apoptosis with an increased Sub-G1 fraction. In addition, increased levels of nuclear fragmentation, p53 expression, and active form of caspase 3 were observed. The marked induction of autophagy by MBZ was also noted. Interestingly, inhibition of autophagy through knocking down of Beclin1 or ATG5/7, or treatment with autophagy inhibitors such as 3-methyladenine and chloroquine resulted in marked enhancement of anti-proliferative and pro-apoptotic effects of MBZ in ECs. Consequently, we suggest that MBZ induces autophagy in ECs and that protective autophagy can be a novel target for enhancing the anti-angiogenic efficacy of MBZ in cancer treatment.

Keywords

References

  1. Adelusi, S. A. and Salako, L. A. (1982) Tissue and blood concentrations of chloroquine following chronic administration in the rat. J. Pharm. Pharmacol. 34, 733-735. https://doi.org/10.1111/j.2042-7158.1982.tb06211.x
  2. Bai, R. Y., Staedtke, V., Aprhys, C. M., Gallia, G. L. and Riggins, G. J. (2011) Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro. Oncol. 13, 974-982. https://doi.org/10.1093/neuonc/nor077
  3. Bai, R. Y., Staedtke, V., Rudin, C. M., Bunz, F. and Riggins, G. J. (2015a) Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro. Oncol. 17, 545-554. https://doi.org/10.1093/neuonc/nou234
  4. Bai, R. Y., Staedtke, V., Wanjiku, T., Rudek, M. A., Joshi, A., Gallia, G. L. and Riggins, G. J. (2015b) Brain penetration and efficacy of different mebendazole polymorphs in a mouse brain tumor model. Clin. Cancer Res. 21, 3462-3470. https://doi.org/10.1158/1078-0432.CCR-14-2681
  5. Belloni, D., Veschini, L., Foglieni, C., Dell'Antonio, G., Caligaris-Cappio, F., Ferrarini, M. and Ferrero, E. (2010) Bortezomib induces autophagic death in proliferating human endothelial cells. Exp. Cell Res. 316, 1010-1018. https://doi.org/10.1016/j.yexcr.2009.11.005
  6. Bergers, G. and Hanahan, D. (2008) Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer 8, 592-603. https://doi.org/10.1038/nrc2442
  7. Briceno, E., Calderon, A. and Sotelo, J. (2007) Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiform. Surg. Neurol. 67, 388-391. https://doi.org/10.1016/j.surneu.2006.08.080
  8. Briceno, E., Reyes, S. and Sotelo, J. (2003) Therapy of glioblastoma multiforme improved by the antimutagenic chloroquine. Neuroseg. Focus 14, e3.
  9. Carmeliet, P. and Jain, R. K. (2000) Angiogenesis in cancer and other diseases. Nature 407, 249-257. https://doi.org/10.1038/35025220
  10. Chauhan, S., Ahmed, Z., Bradfute, S. B., Arko-Mensah, J., Mandell, M. A., Choi, S. W., Kimura, T., Blanchet, F., Waller, A., Mudd, M. H., Jiang, S., Sklar, L., Timmins, G. S., Maphis, N., Bhaskar, K., Piguet, V. and Deretic, V. (2015) Pharmaceutical screen identifies novel target processes for activation of autophagy with a broad translational potential. Nat. Commun. 6, 8620. https://doi.org/10.1038/ncomms9620
  11. Choi, M., Lee, H. S., Naidansaren, P., Kim, H. K., O, E., Cha, J. H., Ahn, H. Y., Yang, P. I., Shin, J. C. and Joe, Y. A. (2013) Proangiogenic features of Wharton's jelly-derived mesenchymal stromal/stem cells and their ability to form functional vessels. Int. J. Biochem. Cell Biol. 45, 560-570. https://doi.org/10.1016/j.biocel.2012.12.001
  12. Chu, N., Yao, G., Liu, Y., Cheng, M. and Ikejima, T. (2016) Newly synthesized bis-benzimidazole compound 8 induces apoptosis, autophagy and reactive oxygen species generation in HeLa cells. Bioorg. Med. Chem. Lett. 26, 4367-4371. https://doi.org/10.1016/j.bmcl.2016.01.085
  13. Cross, M. J. and Claesson-Welsh, L. (2001) FGF and VEGF function in angiogenesis: signalling pathways, biological responses and therapeutic inhibition. Trends Pharmacol. Sci. 22, 201-207. https://doi.org/10.1016/S0165-6147(00)01676-X
  14. Dakshanamurthy, S., Issa, N. T., Assefnia, S., Seshasayee, A., Peters, O. J., Madhavan, S., Uren, A., Brown, M. L. and Byers, S. W. (2012) Predicting new indications for approved drugs using a proteochemometric method. J. Med. Chem. 55, 6832-6848. https://doi.org/10.1021/jm300576q
  15. Doudican, N., Rodriguez, A., Osman, I. and Orlow, S. J. (2008) Mebendazole induces apoptosis via Bcl-2 inactivation in chemoresistant melanoma cells. Mol. Cancer Res. 6, 1308-1315. https://doi.org/10.1158/1541-7786.MCR-07-2159
  16. Ferrara, N. (2010) Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 21, 21-26. https://doi.org/10.1016/j.cytogfr.2009.11.003
  17. Friedman, P. A. and Platzer, E. G. (1980) Interaction of anthelmintic benzimidazoles with Ascaris suum embryonic tubulin. Biochim. Biophys. Acta 630, 271-278. https://doi.org/10.1016/0304-4165(80)90431-6
  18. He, L., Shi, L., Du, Z., Huang, H., Gong, R., Ma, L., Chen, L., Gao, S., Lyu, J. and Gu, H. (2018) Mebendazole exhibits potent anti-leukemia activity on acute myeloid leukemia. Exp. Cell Res. 369, 61-68. https://doi.org/10.1016/j.yexcr.2018.05.006
  19. Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52, 2745-2756. https://doi.org/10.1172/JCI107470
  20. Kim, H. K., Oh, D. S., Lee, S. B., Ha, J. M. and Joe, Y. A. (2008) Antimigratory effect of TK1-2 is mediated in part by interfering with integrin alpha2beta1. Mol. Cancer Ther. 7, 2133-2141. https://doi.org/10.1158/1535-7163.MCT-07-2405
  21. Kumar, S., Guru, S. K., Pathania, A. S., Kumar, A., Bhushan, S. and Malik, F. (2013) Autophagy triggered by magnolol derivative negatively regulates angiogenesis. Cell Death Dis. 4, e889. https://doi.org/10.1038/cddis.2013.399
  22. Laclette, J. P., Guerra, G. and Zetina, C. (1980) Inhibition of tubulin polymerization by mebendazole. Biochem. Biophys. Res. Commun. 92, 417-423. https://doi.org/10.1016/0006-291X(80)90349-6
  23. Lee, S. G. and Joe, Y. A. (2018) Autophagy mediates enhancement of proangiogenic activity by hypoxia in mesenchymal stromal/stem cells. Biochem. Biophys. Res. Commun. 501, 941-947. https://doi.org/10.1016/j.bbrc.2018.05.086
  24. Lee, S. W., Kim, H. K., Lee, N. H., Yi, H. Y., Kim, H. S., Hong, S. H., Hong, Y. K. and Joe, Y. A. (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett. 360, 195-204. https://doi.org/10.1016/j.canlet.2015.02.012
  25. Maiuri, M. C., Zalckvar, E., Kimchi, A. and Kroemer, G. (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741-752. https://doi.org/10.1038/nrm2239
  26. Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  27. Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
  28. Mukhopadhyay, T., Sasaki, J., Ramesh, R. and Roth, J. A. (2002) Mebendazole elicits a potent antitumor effect on human cancer cell lines both in vitro and in vivo. Clin. Cancer Res. 8, 2963-2969.
  29. Munshi, N., Fernandis, A. Z., Cherla, R. P., Park, I. W. and Ganju, R. K. (2002) Lipopolysaccharide-induced apoptosis of endothelial cells and its inhibition by vascular endothelial growth factor. J. Immunol. 168, 5860-5866. https://doi.org/10.4049/jimmunol.168.11.5860
  30. Nguyen, T. M., Subramanian, I. V., Kelekar, A. and Ramakrishnan, S. (2007) Kringle 5 of human plasminogen, an angiogenesis inhibitor, induces both autophagy and apoptotic death in endothelial cells. Blood 109, 4793-4802. https://doi.org/10.1182/blood-2006-11-059352
  31. Nguyen, T. M., Subramanian, I. V., Xiao, X., Ghosh, G., Nguyen, P., Kelekar, A. and Ramakrishnan, S. (2009) Endostatin induces autophagy in endothelial cells by modulating Beclin 1 and beta-catenin levels. J. Cell. Mol. Med. 13, 3687-3698. https://doi.org/10.1111/j.1582-4934.2009.00722.x
  32. Nishikawa, T., Tsuno, N. H., Okaji, Y., Sunami, E., Shuno, Y., Sasaki, K., Hongo, K., Kaneko, M., Hiyoshi, M., Kawai, K., Kitayama, J., Takahashi, K. and Nagawa, H. (2010) The inhibition of autophagy potentiates anti-angiogenic effects of sulforaphane by inducing apoptosis. Angiogenesis 13, 227-238. https://doi.org/10.1007/s10456-010-9180-2
  33. Niwa, K., Inanami, O., Yamamori, T., Ohta, T., Hamasu, T., Karino, T. and Kuwabara, M. (2002) Roles of protein kinase C delta in the accumulation of P53 and the induction of apoptosis in H2O2-treated bovine endothelial cells. Free Radic. Res. 36, 1147-1153. https://doi.org/10.1080/1071576021000016409
  34. Pathania, A. S., Wani, Z. A., Guru, S. K., Kumar, S., Bhushan, S., Korkaya, H., Seals, D. F., Kumar, A., Mondhe, D. M., Ahmed, Z., Chandan, B. K. and Malik, F. (2015) The anti-angiogenic and cytotoxic effects of the boswellic acid analog BA145 are potentiated by autophagy inhibitors. Mol. Cancer 14, 6. https://doi.org/10.1186/1476-4598-14-6
  35. Pinto, L. C., Soares, B. M., Pinheiro Jde, J., Riggins, G. J., Assumpcao, P. P., Burbano, R. M. and Montenegro, R. C. (2015) The anthelmintic drug mebendazole inhibits growth, migration and invasion in gastric cancer cell model. Toxicol. In Vitro 29, 2038-2044. https://doi.org/10.1016/j.tiv.2015.08.007
  36. Ramakrishnan, S., Nguyen, T. M., Subramanian, I. V. and Kelekar, A. (2007) Autophagy and angiogenesis inhibition. Autophagy 3, 512-515.
  37. Takahashi, T., Yamaguchi, S., Chida, K. and Shibuya, M. (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J. 20, 2768-2778. https://doi.org/10.1093/emboj/20.11.2768
  38. Wang, R., Chadalavada, K., Wilshire, J., Kowalik, U., Hovinga, K. E., Geber, A., Fligelman, B., Leversha, M., Brennan, C. and Tabar, V. (2002) Globlastoma stem-like cells give rise to tumour endothelium. Nature 468, 829-833. https://doi.org/10.1038/nature09624
  39. Wang, X. J., Chu, N. Y., Wang, Q. H., Liu, C., Jiang, C. G., Wang, X. Y., Ikejima, T. and Cheng, M. S. (2012) Newly synthesized bisbenzimidazole derivatives exerting anti-tumor activity through induction of apoptosis and autophagy. Bioorg. Med. Chem. Lett. 22, 6297-6300. https://doi.org/10.1016/j.bmcl.2012.06.102
  40. Yang, S. Y., Kim, N. H., Cho, Y. S., Lee, H. and Kwon, H. J. (2014) Convallatoxin, a dual inducer of autophagy and apoptosis, inhibits angiogenesis in vitro and in vivo. PLoS ONE 9, e91094. https://doi.org/10.1371/journal.pone.0091094
  41. Zhang, L., Guo, M., Li, J., Zheng, Y., Zhang, S., Xie, T. and Liu, B. (2015) Systems biology-based discovery of a potential Atg4B agonist (Flubendazole) that induces autophagy in breast cancer. Mol. Biosyst. 11, 2860-2866. https://doi.org/10.1039/C5MB00466G
  42. Zhang, L., Jing, H., Cui, L., Li, H., Zhou, B., Zhou, G. and Dai, F. (2013) 3,4-Dimethoxystilbene, a resveratrol derivative with anti-angiogenic effect, induces both macroautophagy and apoptosis in endothelial cells. J. Cell. Biochem. 114, 697-707. https://doi.org/10.1002/jcb.24411
  43. Zhang, Q., Li, Y., Miao, C., Wang, Y., Xu, Y., Dong, R., Zhang, Z., Griffin, B. B., Yuan, C., Yan, S., Yang, X., Liu, Z. and Kong, B. (2018) Anti-angiogenesis effect of Neferine via regulating autophagy and polarization of tumor-associated macrophages in high-grade serous ovarian carcinoma. Cancer Lett. 432, 144-155. https://doi.org/10.1016/j.canlet.2018.05.049

Cited by

  1. Mebendazole as a Candidate for Drug Repurposing in Oncology: An Extensive Review of Current Literature vol.11, pp.9, 2019, https://doi.org/10.3390/cancers11091284
  2. Progress in Redirecting Antiparasitic Drugs for Cancer Treatment vol.15, 2021, https://doi.org/10.2147/dddt.s308973
  3. GAA deficiency promotes angiogenesis through upregulation of Rac1 induced by autophagy disorder vol.1868, pp.5, 2019, https://doi.org/10.1016/j.bbamcr.2021.118969
  4. HPMA-Based Polymer Conjugates for Repurposed Drug Mebendazole and Other Imidazole-Based Therapeutics vol.13, pp.15, 2019, https://doi.org/10.3390/polym13152530
  5. MiR-20b-5p modulates inflammation, apoptosis and angiogenesis in severe acute pancreatitis through autophagy by targeting AKT3 vol.54, pp.7, 2019, https://doi.org/10.1080/08916934.2021.1953484