• Title/Summary/Keyword: Anti-aging, Inhibition

Search Result 237, Processing Time 0.033 seconds

Effect of Microalgal Extracts of Tetraselmis suecica against UVB-Induced Photoaging in Human Skin Fibroblasts

  • Jo, Wol Soon;Yang, Kwang Mo;Park, Hee Sung;Kim, Gi Yong;Nam, Byung Hyouk;Jeong, Min Ho;Choi, Yoo Jin
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.241-248
    • /
    • 2012
  • Exposure of cells to ultraviolet B (UVB) radiation can induce production of free radicals and reactive oxygen species (ROS), which damage cellular components. In addition, these agents can stimulate the expression of matrix metalloproteinase (MMP) and decrease collagen synthesis in human skin cells. In this study, we examined the anti-photoaging effects of extracts of Tetraselmis suecica (W-TS). W-TS showed the strongest scavenging activity against 2,2-difenyl-1-picrylhydrazyl (DPPH) and peroxyl radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. We observed that the levels of both intracellular ROS and lipid peroxidation significantly increased in UVB-irradiated human skin fibroblast cells. Furthermore, the activities of enzymatic antioxidants (e.g., superoxide dismutase) and the levels of non-enzymatic antioxidants (e.g., glutathione) significantly decreased in cells. However, W-TS pretreatment, at the maximum tested concentration, significantly decreased intracellular ROS and malondialdehyde (MDA) levels, and increased superoxide dismutase and glutathione levels in the cells. At this same concentration, W-TS did not show cytotoxicity. Type 1 procollagen and MMP-1 released were quantified using RT-PCR techniques. The results showed that W-TS protected type 1 procollagen against UVB-induced depletion in fibroblast cells in a dose-dependent manner via inhibition of UVB-induced MMP-1. Taken together, the results of the study suggest that W-TS effectively inhibits UVB-induced photoaging in skin fibroblasts by its strong anti-oxidant ability.

Anti-oxidation, anti-inflammation, anti-wrinkle, and pore-tightening effects of phenolic compounds from Aeonium sedifolium leaves (소인제(Aeonium sedifolium) 잎 유래 phenolic 성분의 항산화, 피부주름생성 억제, 항염증 및 모공 수축 효과)

  • Jung-In Kim;Min-Jae Kim;Ha-Gyeong Jo;Da-Eun Jeong;Hye-Jin Park;Young-Je Cho
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.347-357
    • /
    • 2023
  • The succulent plant Aeonium sedifolium leaves contain several compounds that are of interest for their cosmetic uses on the skin. This study measured the inhibitory effects of enzyme production and antioxidant, astringent effects and skin wrinkles using Aeonium sedifolium leaves (ASL). The total phenolics compounds (TPC) content of ASL under optimal extraction conditions was 34.49 mg/g for hot water extract (ASLW) and 61.64 mg/g for 50% ethanol extract (ASLE). The ASLW and ASLE extracts were freeze-dried, powdered, and used as solids. TPC content, 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, and 2,2'-azinobis (3-ethylben-zothiazoline 6-sulfonate) (ABTS) radical inhibition of the ASL phenolics were tested. The DPPH radical scavenging activities of ASLW and ASLE were tested at a TPC of 100 ㎍/mL. ABTS radical inhibition showed antioxidant activity of 100.00% in ASLW and ASLE, and the antioxidant protection factor of ASLW and ASLE was 1.07 and 1.22, respectively. The thiobarbituric acid-reactive substance (TBARS) inhibitory activity of ASLW and ASLE was 77.00%. The elastase inhibitory activity of ASLE was 69.03%, and collagenase inhibition activity for ASLW and ASLE was 29.82% and 54.76%, respectively. The astringent effect of ASLE was 89.82% at a TPC of 200 ㎍/mL. Thus, we concluded that ASL has the potential as a functional cosmetic ingredient with anti-aging effects on the skin.

Collagen synthesis ability and inhibitory effect of MMPs in keratinocytes of Lysimachia christinae Hance Extract (금전초 추출물의 케라티노사이트 내 collagen 합성능 및 MMPs 억제효과)

  • Kim, Ju-Eun;Choi, Yun-Sik;Kim, Hye Kyung;Jang, Young-Ah
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.820-829
    • /
    • 2020
  • This study was conducted to investigate the anti-oxydant and anti-winkle efficacy as cosmetics ingredient of Lysimachia christinae Hance. Recently, the study of wrinkle improvement of natural products has received continuous interest. so we looked at relationship between reactive oxygen species (ROS) generation and pro-collagen synthesis and matrix metalloproteinases (MMPs) through this study. L. christinae Hance were extracted with 70% ethanol (LcHE) and distilled water (LcHW), respectively, and the experiment was conducted. LcHE had better ROS inhibition effect than LcHW and showed no toxicity up to 250 ㎍/mL concentration as a result of MTT assay in HaCaT cells, so we selected LcHE and conducted the wrinkle improvement material study. We confirmed that the synthesis of type-1 pro-collagen reduced by UVB is activated through pro-collagen synthesis assay. we confirmed that LcHE inhibited the increase in MMP-1 -3 -9 of MMPs induced by UVB in skin cells through western blot and we also performed real-time PCR to confirm the effect of the extract with dependence of concentration at mRNA levels. Therefore, it is expected that Lysimachia christinae Hance is used as a natural material for cosmetics that can effectively prevent wrinkles and skin aging by UVB.

Induction of Cell Cycle Arrest at G2/M phase by Ethanol Extract of Scutellaria baicalensis in Human Renal Cell Carcinoma Caki-1 Cells (황금 에탄올 추출물에 의한 인간 신장암 세포주 Caki-1의 G2/M arrest 유발)

  • Park, Dong-Il;Jeong, Jin-Woo;Park, Cheol;Hong, Su-Hyun;Shin, Soon-Shik;Choi, Sung-Hyun;Choi, Yung-Hyun
    • Herbal Formula Science
    • /
    • v.23 no.2
    • /
    • pp.199-208
    • /
    • 2015
  • Objectives : In the present study, we investigated the effects of ethanol extract of Scutellaria baicalensis (EESB) on the progression of cell cycle in human renal cell carcinoma Caki-1 cells. Methods : The effects of EESB on cell growth and apoptosis induction were evaluated by trypan blue dye exclusion assay and flow cytometry, respectively. The mRNA and protein levels were determined by Western blot analysis and reverse transcription-polymerase chain reaction, respectively. Results : It was found that EESB treatment on Caki-1 cells resulted in a dose-dependent inhibition of cell growth and induced apoptotic cell death as detected by Annexin V-FITC staining. The flow cytometric analysis indicated that EESB resulted in G2/M arrest in cell cycle progression which was associated with the down-regulation of cyclin A expression. Our results also revealed that treatment with EESB increased the mRNA and proteins expression of tumor suppressor p53 and cyclin-dependent kinase (Cdk) inhibitor p21(WAF1/CIP1), without any noticeable changes in cyclin B1, Cdk2 and Cdc2. In addition, the incubation of cells with EESB resulted in a significant increase in the binding of p21 and Cdk2 and Cdc2. These findings suggest that EESB-induced G2/M arrest and apoptosis in Caki-1 cells is mediated through the p53-mediated upregulation of Cdk inhibitor p21. Conclusions : Taken together, these findings suggest that EESB may be a potential chemotherapeutic agent and further studies will be needed to identify the biological active compounds that confer the anti-cancer activity of S. baicalensis.

Piceatannol-Induced G1 Arrest of the Cell Cycle is Associated with Inhibition of Prostaglandin E2 Production in Human Gastric Cancer AGS Cells (Piceatannol에 의한 AGS 인체 위암세포의 G1 Arrest 및 Prostaglandin E2 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.907-913
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene) is a polyphenol detected in grapes, rhubarb, and sugarcane. Although recent experimental data revealed that this compound is known to exhibit immunosuppressive and antitumorigenic activities in several cell lines, the molecular mechanisms underlying anticancer activity are poorly understood. In the present study, we investigated possible further mechanisms by which piceatannol exerts its anti-proliferative action in cultured human gastric cancer AGS cells. Piceatannol treatment resulted in the inhibition of growth and G1 arrest of the cell cycle in a concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by piceatannol was associated with the modulation of cyclin-dependent kinases (Cdks) and cyclins, up-regulation of the expression of Cdk inhibitor p21 (WAF1/CIP1) in both transcriptional and translational levels, and the inhibition of phosphorylation of retinoblastoma proteins and E2F1 expression. In addition, piceatannol treatment caused a progressive decrease in the expression levels of cyclooxygenase (COX)-2 without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin $E_2$ synthesis.

Inhibitory Effects of Eel (Anguilla japonica) Extracted Carnosine on Protein Glycation (뱀장어(Anguilla japonica)로부터 추출된 Carnosine의 단백질당화 억제효과)

  • Song, Ho-Su;Lee, Keun-Tai;Park, Seong-Min;Kang, Ok-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.2
    • /
    • pp.104-108
    • /
    • 2009
  • Glycation and oxidation induce formation of carbonyl (CO) groups in proteins, which can be used to develop an index of cellular aging. Methyl glyoxal (MG) and hypochlorite anions are deleterious products of oxygen free-radical reaction. The effects of eel carnosine on protein modification mediated by MG and hypochlorite were studied. MG and hypochlorite induced formation of carbonyl groups with high molecular weight and cross-linked forms of ovalbumin. The presence of eel carnosine effectively inhibited these modifications in a concentration-dependent manner. Imidazole ring in eel carnosine might have a primary role in inhibition of protein glycation. Our data suggests that the eel carnosine may be useful as a "natural" anti-glycating agents.

Antioxidant Activity and Inhibition of MMP-1 Expression of Schizandrae fructus (Schizandra chinensis) Extract (오미자 추출물의 항산화 활성 및 MMP-1 발현저해)

  • Park, Sung-Min;Kim, Jin-Jun;Jeong, Kwan-Young;Han, Sang-Keun;Jeong, Tae-Hwa;Yun, Mi-Young
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.1
    • /
    • pp.47-52
    • /
    • 2013
  • We invesitagat the effects of antioxidant and suppression of MMP-1 in UV-irradiated human dermal fibroblasts (HDF) by schizandrin isolated from Schisandra chinensis. Ultrasonic technique was used to extract schizandrin from S. chinensis. The higher contents of schizandrin (6.34 mg/ml) in 70% EtOH extract obtained by ultrasonic treatment at 20 MHz for 2 h during 10 days. Schizandrin had antioxidant activities. Schizandrin (1-10 ${\mu}g/ml$) induced a significant dose-dependent decrease in the expression fo MMP-1 protein. These results suggest that schizandrin is a potential candidate for the prevention and treatment of skin aging.

Thermal Resistance and daf-16 Regulation of Fermented Zizyphus jujuba Fruits in Caenorhabditis elegans

  • Yu, Young-Bob
    • Korean Journal of Plant Resources
    • /
    • v.33 no.6
    • /
    • pp.645-650
    • /
    • 2020
  • The mechanism of anti-aging of fermented jujube (Zizyphus jujuba fruits (ZJF)) was investigated using transgenic daf-16 and mev-1 strains of C. elegans. Jujube extracts fermented for 7 days (F7-ZJF) and 14 days (F14-ZJF) with Laetiporus sulphureus were treated to a NGM agar plate with 10-15 transgenic daf-16 and mev-1 strains of the synchronized age. There was no difference of lifespan between the drug-treated group (7-day fermented ex. (F7-zjf-200 ㎍/mL), 14-day fermented ex. (F14-zjf-200 ㎍/mL)) and the non-treatment group in both daf-16 and mev-1 strains. In the thermal stress experiment, F7-zjf-200 ㎍/mL showed a significant (t = 4.017) activity in thermal stress resistance with a 12% higher survival rate than the control group. In the survival test in H2O2, F7-zjf-200 ㎍/mL and F14-zjf-100 ㎍/mL have significant activity in oxidative stress resistance compared to the control group. This study indicates that life span expand of N2 strain of the jujube extract is related to the regulation of daf-16 and inhibition of mev-1 signal in C. elegans.

Antioxidant Activities of Bromotopsentin from the Marine Sponge Spongosorites sp. (해면으로부터 분리된 Bromotopsentin의 항산화활성)

  • Lee, Man Gi;Kim, Dong-Kyoo
    • Korean Journal of Pharmacognosy
    • /
    • v.44 no.3
    • /
    • pp.224-229
    • /
    • 2013
  • Bromotopsentin (BSM) is a bisindole alkaloid compound, which is recognized as a metabolite of the marine sponge Spongosorites sp. In this study, the antioxidant activity of BSM was investigated. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay, the trolox equivalent antioxidant capacity (TEAC) assay, the superoxide radical scavenging (NBT) assay, the lipid peroxidation and hydroxyl radical-induced DNA damage assays were carried out to evaluate the antioxidant activity of BSM. It was found that BSM had stronger scavenging activity on the stable free radical DPPH and superoxide radical than L-ascorbic acid with an $IC_{50}$ value of 62 and 64 ${\mu}M$, respectively. The TEAC value which indicated the total antioxidant capacity of BSM was about 0.8, which was also stronger than L-ascorbic acid. About 1.3 ${\mu}M$ of BSM induced 50% inhibition of lipid peroxidation. 60 nM of BSM exhibited a significant protective activity against DNA strand scission by hydroxyl radical on pBR322 DNA. Taken together, we suggest that BSM possesses strong antioxidant activity, and could be a valuable new addition to the list of anti-aging chemotherapeutic agents.

Therapeutic applications of ginseng for skeletal muscle-related disorder management

  • Syed Sayeed Ahmad;Hee Jin Chun;Khurshid Ahmad;Inho Choi
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.12-19
    • /
    • 2024
  • Skeletal muscle (SM) is the largest organ of the body and is largely responsible for the metabolism required to maintain body functions. Furthermore, the maintenance of SM is dependent on the activation of muscle satellite (stem) cells (MSCs) and the subsequent proliferation and fusion of differentiating myoblasts into mature myofibers (myogenesis). Natural compounds are being used as therapeutic options to promote SM regeneration during aging, muscle atrophy, sarcopenia, cachexia, or obesity. In particular, ginseng-derived compounds have been utilized in these contexts, though ginsenoside Rg1 is mostly used for SM mass management. These compounds primarily function by activating the Akt/mTOR signaling pathway, upregulating myogenin and MyoD to induce muscle hypertrophy, downregulating atrophic factors (atrogin1, muscle ring-finger protein-1, myostatin, and mitochondrial reactive oxygen species production), and suppressing the expressions of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in cachexia. Ginsenoside compounds are also used for obesity management, and their anti-obesity effects are attributed to peroxisome proliferator activated receptor gamma (PPARγ) inhibition, AMPK activation, glucose transporter type 4 (GLUT4) translocation, and increased phosphorylations of insulin resistance (IR), insulin receptor substrate-1 (IRS-1), and Akt. This review was undertaken to provide an overview of the use of ginseng-related compounds for the management of SM-related disorders.