Browse > Article
http://dx.doi.org/10.5657/kfas.2009.42.2.104

Inhibitory Effects of Eel (Anguilla japonica) Extracted Carnosine on Protein Glycation  

Song, Ho-Su (Department of Food Science and Biotechnology, Pukyong National University)
Lee, Keun-Tai (Department of Food Science and Biotechnology, Pukyong National University)
Park, Seong-Min (Department of Food Science and Biotechnology, Pukyong National University)
Kang, Ok-Ju (Department of Food and Nutritional Sciences Kyungnam University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.42, no.2, 2009 , pp. 104-108 More about this Journal
Abstract
Glycation and oxidation induce formation of carbonyl (CO) groups in proteins, which can be used to develop an index of cellular aging. Methyl glyoxal (MG) and hypochlorite anions are deleterious products of oxygen free-radical reaction. The effects of eel carnosine on protein modification mediated by MG and hypochlorite were studied. MG and hypochlorite induced formation of carbonyl groups with high molecular weight and cross-linked forms of ovalbumin. The presence of eel carnosine effectively inhibited these modifications in a concentration-dependent manner. Imidazole ring in eel carnosine might have a primary role in inhibition of protein glycation. Our data suggests that the eel carnosine may be useful as a "natural" anti-glycating agents.
Keywords
Eel (Anguilla japonica); Carnosine; Glycation; Carbonyl (CO); Methyl glyoxal (MG); Hypochlorite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bucala, R., A. Cerami and H. Vlassara. 1995. Advanced glycosylation end products in diabetic complications. Diabetes Rev., 3, 258-268
2 Hipkiss, A.R., C. Brownson and M.J. Carrier. 2001. Carnosine, the anti-ageing, anti-oxidant dipeptide, may react with protein carbonyl groups. Mech. Aging Devel., 122, 1431-1445   DOI   ScienceOn
3 Hipkiss, A.R., V.C. Worthington, D.T.J. Himsworth and W. Herwig. 1998. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Bioch. Biophy. Acta, 1380, 46-54   DOI   ScienceOn
4 Hipkiss, A.R. 1998. Carnosine, a protective, anti-aging peptide? Bioche. Cell Biol., 30, 863-868   DOI   ScienceOn
5 Hobart, L.J., I. Seibel, G.S. Yeargans and N.W. Seidler. 2004. Anti-crosslinking properties of carnosine: Significance of histidine. Life Sci., 75, 1379-1389   DOI   ScienceOn
6 Song, H.S., K.T. Lee and O.K. Kang. 2006. Effect of extraction method on the carnosine, protein, and iron contents of eel (Anguilla japonica) extracts. J. Kor. Fish. Soc., 39, 384-390
7 Yokozawa, T., T. Nakagawa and K. Terasawa. 2001. Effects of oritental medicines on the production of advanced glycation products. J. Trad. Med., 18, 107-112
8 Boldyrev, A., H. Abe, S. Stvolinsky and O. Tyulina. 1995. Effects of carnosine and related compounds on generation of free oxygen species: a comparative study. Biochem. Physiol., 112, 481-485   DOI   ScienceOn
9 Thornalley, P.J. 1996. Advanced glycation and the development of diabetic complications. Unifying the involvement of glucose, methylglyoxal and oxidative stress. Endocrinol. Metab., 3, 149-166
10 Smith, E. and C. Bate. 1983. The buffering of muscle in rigor, protein, phosphate and carnosine. J. Physiol., 92, 336-343
11 Torreggiani, A., G. Fini and G. Bottura. 2001. Effect of transition metal binding on the tautomeric equilibrium of the carnosine imidazolic ring. J. Mol. Structu., 565, 341-346   DOI
12 McManus, I.R. 1957, Some metabolic precursors of the N-1-methyl group of anserine in the rat. J. Bio. Chem., 225, 325-334
13 Harris, R.C., D.J. Marlin, D.H. Snow and E. Hultman. 1990. Muscle buffering capacity and dipeptide content in the throughbred horse, greyhound dog and man. Biochem. Physiol., 97, 249-251   DOI   ScienceOn
14 Hamada, Y., N. Araki, N. Koh, J. Nakamura, S. Homuchi and N. Hotta. 1996. Rapid formation of advanced glycation end products by intermediate metabolites of the glycolytic pathway and polyol pathway. Biochem. Biophys. Res. Commun., 228, 539-543   DOI   ScienceOn
15 Nagasawa, T., T. Yokozawa and K. Terassawa. 2001. A study of kampo medicines in a diabetic nephrophathy model. J. Trad. Med., 19, 161-168
16 Miyata, T., S. Sugiyama, D. Suziki, R. Inagi and K. Kurokawa. 1999. Increased carbonyl modification by lipids and carbohydrates in diabetic nephropathy. Kidney Int., 56, 54-56   DOI   ScienceOn
17 Stadtman, E.R. 1992. Protein oxidation and aging. Science, 257, 1220-1224   DOI
18 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head bacteriophage T3. Nature, 227, 680-685   DOI   ScienceOn
19 Frye, E.B., T.P. Degenhardt, S.R. Thorpe and J.W. Baynes. 1998. Role of the Maillard reaction in aging of tissue proteins-advanced glycation end product-dependent increase in imidazolium crosslinks in human lens proteins. J. Biol. Chem., 273, 18714-18719   DOI   ScienceOn
20 Quinn, P.R., A.A. Boldrev and V.E. Formazuyk. 1992. Carnosine : its properties, functions and potential therapeutic applications. Mol. Aspects Med., 13, 379-444   DOI   ScienceOn
21 Lee, B.J., J.H. Park, Y.S. Lee, M.H. Cho, Y.C. Kim and D.G. Hendricks. 1999. Effect of carnosine and related compounds on glucose oxidation and protein glycation in vitro. J. Biochem. Mol. Biol., 32, 370-378
22 Bussayarat, M. and K.O. Intarapichet. 2005. Heat and ultrafiltration extraction of broiler meat carnosine and its antioxidant activity. Meat Sci., 71, 364-374   DOI   ScienceOn