• Title/Summary/Keyword: Anti-TNF agent

Search Result 232, Processing Time 0.025 seconds

Anti-inflammatory Effect of Fallopia sachalinensis RonseDecr. Fruit (왕호장 열매의 항염증 효과)

  • Park, Sung Ha;Jeong, Jeong Hyeon;Park, Byoung Jun;Jeong, Tae Hwa
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.3
    • /
    • pp.237-241
    • /
    • 2015
  • To develop a new anti-inflammation agent for cosmetics, we investigated the anti-inflammatory activity of Fallopia sachalinensis RonseDecr. fruit extracts (FSR). FSR inhibited the pre-inflammatory cytokines ($1L-1{\beta}$, IL-6, TNF-${\alpha}$) and reduced NO production of RAW 264.7 macrophage cells in a dose-dependent manner and decreased the activity to about 51% at a concentration of $100{\mu}g/mL$. FSR suppressed not only the mRNA expression of iNOS and COX-2, but also the protein expression of iNOS and COX-2 in macrophage. The results suggested that FSR has considerable potential as a cosmetics ingredient with an anti-inflammatory effect.

Anti-inflammatory activity of Scutellaria Baicalensis root extract in lipopolysaccharide-induced RAW 264.7 cells (LPS로 유도된 RAW264.7세포주에서 황금뿌리 물추출물의 항염증활성)

  • Lee, Ye Eun;Park, Hong Jin;Park, Chung-berm;Hwang, Seung-mi
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.115-120
    • /
    • 2021
  • Scutellaria baicalensis has been used as a traditional medicine for diarrhea, dysentery, hypertension, hemorrhaging, insomnia, inflammation, and respiratory infections. This study examined the anti-inflammatory effect of Scutellaria baicalensis water extract (SWE) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. To evaluate the anti-inflammatory effect of SWE, RAW 264.7 macrophages were stimulated with LPS to induce the production of inflammation-related factors, which were measured by western blotting. In RAW 264.7 cells, SWE inhibited the production of nitric oxide (NO) without causing cell toxicity. SWE also reduced the expression of inducible NO synthase and cyclooxygenase-2 protein, as well as the production of pro-inflammatory cytokines (such as tumor necrosis factor-α). The phosphorylation levels of the mitogen-activated protein kinase family members, such as JNK and p38, were also reduced by SWE. Thus, SWE could be used as a potential anti-inflammatory agent.

Inhibitory Effect of Tetragonia tetragonoides Water Extract on the Production of $TNF-{\alpha}$ and Tryptase in Trypsin-Stimulated Human Mast Cells

  • Kang, Ok-Hwa;Choi, Yeon-A;Park, Hye-Jung;Tae, Jin;Kang, Chon-Sik;Lee, Dong-Sung;Kim, Ju-Ho;Lee, Young-Mi
    • Natural Product Sciences
    • /
    • v.11 no.4
    • /
    • pp.207-212
    • /
    • 2005
  • Tetragonia tetragonoides (Aizoaceae) has been known as an anti-cancer agent. The activation of proteinase-activated receptor-2 (PAR-2) by trypsin appears to play a role in inflammation. In the present study, we examined the inhibitory effects of Tetragonia tetragonoides water extract (TTWE) on the production of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and tryptase in trypsin-stimulated human leukemic mast cells (HMC-1) expressing PAR-2. HMC-1 cells were stimulated with trypsin in the presence or absence of TTWE (10, 100, and $1000\;{\mu}g/ml$). The level of $TNF-{\alpha}$ secretion from HMC-1 cells was measured by enzyme-linked immunosorbent assay (ELISA). $TNF-{\alpha}$ and tryptase mRNA expression were examined by reverse transcription-PCR. Also, extracellular signal-regulated kinese (ERK) activation was assessed by Western blot analysis. Trypsin activity was measured using the substrate Bz-DL-Arg-p-nitroanilide (BAPNA). It was observed that $TNF-{\alpha}$ secretion, tryptase mRNA and $TNF-{\alpha}$ mRNA expression in trypsin-stimulated HMC-1 cells were inhibited by pretreatment of TTWE ($1000\;{\mu}g/ml$). Furthermore, the pretreatment of TTWE ($1000\;{\mu}g/ml$) resulted in the reduction of ERK phosphorylation and trypsin activity. These results suggest hat TTWE might have the inhibitory effects on the PAR-2-dependent inflammation processes and it is likely to function as PAR-2 antagonist.

The Melanin Inhibition, Anti-aging and Anti-inflammation Effects of Portulaca oleracea Extracts on Cells (쇠비름 추출물의 미백 및 항노화, 항염증 효과)

  • Zhang, Rui;Lee, Hyun-Jin;Yoon, Yeong-Min;Kim, Su-Mi;Kim, Hyun-Sook;Li, Shun Hua;An, Sung-Kwan
    • KSBB Journal
    • /
    • v.24 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • The Portulaca oleracea (P. oleracea) is a popular herbal medicine in East Asia that was known to possess detoxification, antifebrile and antifungal effects. In the present study, we examined the biological activities of ethanol extracts of P. oleracea under various conditions with NIH3T3, B16F10, and MCF-7 cell line model systems. Extracts of P. oleracea (0.5 mg/ml) showed inhibition of expression of tyrosinase, but does not suppress either of TYRP-1 or DCT expression on B16F10 cells. Extracts of P. oleracea (2 mg/ml) showed anti-inflammatory effects on TNF-$\alpha$-stimulated NIH3T3/$NF{\kappa}B$-Luc cells and increase of the synthesis of collagen on NIH3T3 (wild type) cells. These results suggest that extracts of P. oleracea could be used as a functional biomaterial in developing a skin whitening agent and having the anti-inflammatory, anti-wrinkle, and anti-aging activities.

Anti-inflammatory effects of a methanol extract from Pulsatilla koreana in lipopolysaccharide-exposed rats

  • Lee, Sang-Hyun;Lee, Eun;Ko, Young-Tag
    • BMB Reports
    • /
    • v.45 no.6
    • /
    • pp.371-376
    • /
    • 2012
  • To investigate the therapeutic effect of a Korean herbal medicine Pulsatilla koreana as an anti-septic agent, anti-inflammatory effects of the herbal medicine were determined in lipopolysaccharide (LPS)-exposed rats. Treatment with a methanol extract from Pulsatilla koreana significantly inhibited LPS-induced inflammatory responses. Results from ELISA analysis showed that Pulsatilla koreana decreased the plasma and hepatic levels of pro-inflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$ while increased the level of anti-inflammatory cytokine IL-10 in LPS-exposed rats. Pulsatilla koreana also decreased the plasma levels of other inflammatory mediators such as $NO_3{^-}/NO_2{^-}$, ICAM-1, $PGE_2$, and CINC-1 in LPS-exposed rats. Although no significant effects were observed in the phagocytic activities, the distribution of lymphocyte population was significantly shifted by the treatment with Pulsatilla koreana. All together, Pulsatilla koreana exerts anti-inflammatory activities in the immune-challenged animals implicating that this Korean herbal medicine is therapeutically useful for the treatment of inflammatory diseases like sepsis.

Anti-Inflammatory and Antioxidant Effects of Clam Worm Extract in Macrophage RAW264.7 Cells (갯지렁이와 지렁이 추출물의 항염증 및 항산화 효과 비교)

  • Kim, Se-woong;Sapkota, Mahesh;Li, Liang;Yang, Ming;Park, Chan-il;Soh, Yunjo
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.2
    • /
    • pp.150-157
    • /
    • 2016
  • Earth worm (Eisenia andrei) and clam worm (Perinereis linea) have been used as anti-bacterial and anti-inflammatory agent. However, it is unclear how they exerted their physiological effects in macrophages. In this experiment, the anti-inflammatory and antioxidant effects of clam worm extract (CWE) and earth worm extract (EWE) in RAW264.7 cells were examined by measuring MDA, catalase, SOD, GSH-Px and inflammatory cytokines (nitric oxide, iNOS, interleukin-$1{\beta}$ and tumor necrosis factor-${\alpha}$). Treatment with CWE significantly increased the activities of catalase, SOD and GSH-Px in RAW264.7 cells and decreased the level of MDA. Interestingly, treatment with CWE induced more activities of SOD than EWE. In addition, CWE decreased NO production, iNOS, COX-2, TNF-${\alpha}$ and IL-$1{\beta}$ in RAW264.7. The EWE also decreased NO production and iNOS, but increased COX-2 and IL-$1{\beta}$ suggesting that CWE could be better resources for anti-inflammatory and antioxidant agent than EWE. Taken together, these results indicate that CWE has the potential as a natural antioxidant and a therapeutic for inflammation-related diseases.

Antioxidant and anti-inflammatory activities of water extracts and ethanol extracts from Portulaca oleracea L. (쇠비름 물, 에탄올 추출물의 항산화 및 항염증 활성)

  • Kim, Dong-Gyu;Shin, Jung-Hye;Kang, Min-Jung
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Portulaca oleracea L., a species of Portulacaceae, is ubiquitous. It is a well-known traditional Chinese medicine for removing heat, counteracting toxicity, cooling blood, and maintaining hemostasia; it is also used as antidysentery agent. This study investigated the anti-oxidative and anti-inflammatory activities of water and ethanol extracts from P. oleracea. The total polyphenol content ($21.08{\pm}0.03mg\;GAE/g$) and total flavonoid content ($5.45{\pm}0.76mg\;QE/g$) of the ethanolic extracts were higher than those of the water extracts. The antioxidative activities were determined by evaluating the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and by the ferric reducing antioxidant potential (FRAP) assay. The ABTS radical scavenging activity of the water extract (75.53%) was higher in those of the water extract (67.03%) at concentration of $1,000{\mu}g/mL$. The DPPH radical scavenging activity and FRAP of the ethanol extract were higher than those of the water extract. We also investigated the anti-inflammatory activity of the P. oleracea extracts in LPS-stimulated Raw 264.7 cells. The production levels of nitric oxide (NO) and reactive oxygen species (ROS) significantly decreased with an increasing concentration of the extract. The expression levels of pro-inflammatory cytokines (tumor necrosis faction (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, and IL-6) were significantly lower in the ethanol extract than in the LPS alone treatment group. Based on these results, ethanolic extract from P. oleracea could be an effective antioxidant and anti-inflammatory agent.

1-Furan-2-yl-3-Pyridine-2-yl-Propenone Inhibits TNF-${\apha}$-induced Intestinal Inflammation via Suppression of MCP-1 and IL-8 Expressions in HT-29 Human Colon Epithelial Cells (1-Furan-2-yl-3-pyridin-2-yl-propenone의 TNF-${\apha}$ 유도성 MCP-1과 IL-8의 발현 억제를 통한 장 상피세포 염증 억제효과)

  • Kim, Kyoung-Jin;Kim, Jong-Tae;Lee, Eung-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.52 no.5
    • /
    • pp.402-406
    • /
    • 2008
  • Previously, we have shown that 1-furan-2-yl-3-pyridin-2-yl-propenone (FPP-3) has an anti-inflammatory activity in a rat paw-edema model. In the present study, we investigated an inhibitory effect of FPP-3 on the tumor necrosis factor (TNF)-${\apha}$-induced inflammatory cytokine response in HT-29 human colon epithelial cells. Treatment with FPP-3 significantly prevented the TNF-${\apha}$-induced attachment of leukocytes to HT-29 colon epithelial cells, which is one of the pathologic hallmarks in colon inflammation. The effect of FPP-3 was markedly superior than that of 5-aminosalicylic acid (5-ASA), a commonly used drug for the treatment of inflammatory bowel disease (IBD). The pretreatment with FPP-3 inhibited TNF-${\apha}$- induced monocyte chemoattractant protein (MCP)-1, interleukin (IL)-8 mRNA expressions. In addition, FPP-3 significantly suppressed TNF-${\apha}$-induced nuclear factor (NF)-${\kappa}B$ transcription activity. These results demonstrate that FPP-3 modulates intestinal inflammation via suppressing the NF-${\kappa}B$ dependent expressions of MCP-1 and IL-8, and suggest that FPP-3 may be a valuable agent for the treatment of IBD.

The anti-inflammatory effect of Achyranthes japonica on lipopolysaccharide-induced inflammatory activity in murine macrophages (LPS로 유도한 대식세포의 염증반응에서 우슬의 항염증 효과)

  • Kim, Min-Sun;Jeong, Jin-Soo;Lee, Hye-Youn;Ju, Young-Sung;Bae, Gi-Sang;Seo, Sang-Wan;Cho, Il-Joo;Park, Sung-Joo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.26 no.2
    • /
    • pp.51-57
    • /
    • 2011
  • Objectives : Achyranthes japonica (AJ) has been used as an anti-bacterial and anti-inflammatory agent. However, it is unclear that AJ could show the anti-inflammatory effects in macrophages. In this experiment, we studied whether AJ could inhibit the inflammatory responses in macrophages. Methods : To measure out the cytotoxicity of AJ, we performed the MTT assay. We evaluated the nitric oxide (NO) production, and cytokine production such as interleukin (IL)-1b, IL-6 and tumor necrosis factor (TNF)-a. We also investigated the cellular mechanims such as mitogen activated protein kinases (MAPK)s and nuclear factor kappa B (NF-kB). Results : AJ inhibited lipopolysaccharide (LPS)-induced NO production. AJ also inhibited production levels of IL-1b, IL-6 and TNF-a in LPS-stimulated macrophage. Finally, western blot analysis showed that AJ treatment inhibited the activation of p38 but not of extracellular signal-regulated kinase, c-jun NH2-terminal kinase and NF-kB. Conclusions : These results showed that AJ down-regulated the inflammatory response via p38 in macrophages, which suggest that AJ could be a candidate on treating inflammatory diseases.

Antioxidant and Anti-inflammatory Properties of Two Extracts from Lycium ruthenicum Murray Fruit (흑구기자 열매의 생리활성 평가 연구)

  • Zou, Jie;Lee, Ji-An
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.190-198
    • /
    • 2021
  • The aim of the study was to evaluate the physiological activity of Lycium ruthenicum to investigate their potential as a raw material that can be used in the cosmetic industry. L. ruthenicum fruit extracts were obtained using 70% methanol(LRM) and hot-water(LRW). The DPPH and ABTS radical scavenging abilities were higher in the LRM extract than in the LRW extract. The FRAP value of LRM was about 1.3-fold greater than that of LRW. The polyphenol contents of LRM and LRW were 31.883±1.395 mg/g and 27.748±2.741 mg/g respectively. LRM inhibited the generation of NO in LPS-stimulated RAW264.7 cells. LRM also attenuated the expression of COX-2, PGE2, IL-6, and TNF-α induced by LPS. These results suggests that L. ruthenicum fruits could be use as a source of natural antioxidants and anti-inflammatory agent in cosmetic products.