• Title/Summary/Keyword: Anti-Microbial

Search Result 545, Processing Time 0.024 seconds

Inhibitory Effects of Portulaca Oleracea Ethanol Extract and Glechoma Hederacea Ethanol Extract on the Periodontitis (치주염증에 대한 마치현 및 금전초 에탄올 추출물의 억제 효과)

  • Park, Young Mi;Lee, Young-Rae;Park, Sang Hoon;Lee, Bong Gun;Park, Yeon Ju;Oh, Hong Geun;Moon, Dae In;Son, Min Woo;Kang, Yang Gyu;Kim, Ok Jin;Lee, Seok-Ryun;Lee, Choong Hun;Kim, Min Seuk;Lee, Hak Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.46-50
    • /
    • 2015
  • Both Portulaca oleracea (PO) and Glechoma hederacea (GH) have been used as traditional medicine due to the multiple pharmacological activities. However, the effects of PO and GH in the pathology of periodontitis is still elusive. In this study, we examined anti-microbial activity of PO ethanol extract (POEE) and GH ethanol extract (GHEE) in vitro, and physiological effects of POEE and GHEE on the cell inflammatory responses and the severity of periodontitis were determined using the rat periodontitis model. Our results indicate that POEE and GHEE had no effects on the proliferation of streptococcus mutans and on LPS-mediated inflammatory responses in gingival fibroblast cells. Notably, ingestion of POEE and GHEE resulted in attenuating the severity of periodontitis and population change of immune cells. These data suggests that PO and GH should be considered as candidates for relieving the severity of periondontitis.

Effects of soybean extracts fermented with Lactic acid bacteria on immune system activity (유산균을 이용한 대두 발효 추출물이 면역계 활성에 미치는 영향)

  • Park, Byung-Doo;Kim, Hye-Ja
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.139-153
    • /
    • 2012
  • Objectives : NK cells are spontaneously cytotoxic lymphocytes. These are not only important parts in the first line of defence against bacterial and viral infections of outside, but they may also play a critical role in chronic viral diseases. NK cells kill their targets spontaneously, without the need for prior sensitization and class I MHC restriction by the regulation of cytolytic functions and secretion of a variety of cytokines, such as interleukin-12(IL-12), MCP-1, IL-6, TNF-${\alpha}$, IFN-${\gamma}$. In addition, macrophage and NK cells cooperate through the production of cell mediates. These cooperation and modulation are one of major factors to prevent for evading immune surveillance of cancer. Hence, it could be assumed that if any candidate to enhance activities of macrophage and NK cell, it is considered as a potentially useful agents against cancer. Methods : In our study, to investigate effect of fermented soybean extracts by Lactic acid bacteria (SFE, soybean fermented extracts) work on intestinal immune cell to maintain general immune modulating and anti-cancer activity. We analyzed NK cytotoxicity assay and gene expressions of cytokine related with macrophage and NK cell activity. Results : In vitro experiment, SFE was verified as safety material for cell toxicicty to tumor cell strain without any toxicity of tumor growth inhibition and various cell strain. Effects of macrophage activity stimulating directly by SFE measured induced cytokine. The studies showed that IL-12 production by stimulation of SFE depended on concentration from 0.16mg/mL to 0.63mg/mL with non toxicity to cell, and it was the best activity at 0.63mg/mL. Besides, the effective concentration of SFE producing TNF-${\alpha}$ is similar to IL-12, but it was the best activity at 1.25mg/mL. The level of MCP-1, IL-6 and IFN-${\gamma}$ depended on concentration from 0.16mg/mL to 10mg/mL, IFN-${\gamma}$ showed the best activity at the effective concentration of 0.63mg/mL. With the result of NK cell activity measurement, the spleen cell of mouse injected SFE had 1.5 times higher killing effect than non injected cell. Conclusions : The result of this studies is that Soybean fermetated extracts(SFE) has possibility to immune aided material for the function not only inhibition of microbial infection to macrophage but also activity of adaption immune and cellular immune system.

Functional Understating of Fibroblastic Reticular Cell within Lymph Node Stroma (림프절 스토로마 내의 fibroblastic reticular cell의 기능 이해)

  • So, Deuk Won;Ryu, Sul Hwa;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.23 no.11
    • /
    • pp.1409-1414
    • /
    • 2013
  • Lymph node (LN) is the sites where mature lymphocytes become stimulated to respond to invading pathogens in the body. Lymphocytes screen the surfaces of pathogen-carrying antigen-presenting cells for cognate antigens, while moving along stromal structural back bone. Fibroblastic reticular cells (FRC) is stromal cell forming the 3 dimensional structure networks of the T cell rich zones in LN, and provide a guidance path for immigrating T lymphocytes. In these cooperative environments, the cell to cell bidirectional interactions between FRC and T cells in LN are therefore essential to the normal functioning of these tissues. Not only do FRCs physically construct LN architecture but they are essential for regulating T cell biology within these domains. FRC interact closely with T lymphocytes, is providing scaffolds, secreting soluble factors including cytokine in which FRCs influence T cell immune response. More recently, FRC have been found to induce peripheral T cell tolerance and regulate the extent to which newly activated T cells proliferate within LN. Thus, FRC-T cell crosstalk has important consequences for regulating immune cell function within LN. In addition, FRC have profound effects on innate immune response by secreting anti-microbial peptides and complement, etc in the inflammatory milieu. In summary, we propose a model in which FRC engage in a bidirectional touch to increase the T cell biological efficiency between FRC and T cells. This collaborative feedback loop may help to maintain tissue function during inflammation response.

Lactobacillus plantarum APsulloc 331261 Fermented Products as Potential Skin Microbial Modulation Cosmetic Ingredients (Lactobacillus plantarum APsulloc 331261 발효 용해물의 피부 미생물 조절 효과)

  • Kim, Hanbyul;Myoung, Kilsun;Lee, Hyun Gee;Choi, Eun-Jeong;Park, Taehun;An, Susun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.1
    • /
    • pp.23-29
    • /
    • 2020
  • The skin is colonized by a large number of microorganisms with a stable composition of species. However, disease states of skin such as acne vulgaris, psoriasis, and atopic dermatitis have specific microbiome compositions that are different from those of healthy skin. The target modulation of the skin microbiome can be a potential treatment for these skin diseases. Quorum sensing (QS), a bacterial cell-cell communication system, can control the survival of bacteria and increase cell density. Also, QS affects the pathogenicity of bacteria such as biofilm formation and protease production. In this study, we confirmed anti-QS activity of Amorepacific patented ingredients, which are Lactobacillus ferment lysate (using Lactobacillus plantarum APsulloc 331261, KCCM 11179P) through bio-reporter bacterial strain Chromobacterium violaceum. The purple pigment production of C. violaceum controlled by QS was reduced 27.3% by adding 10 ㎍/mL of Lactobacillus ferment lysate (freeze dried). In addition, the Lactobacillus ferment lysate increased growth of Staphylococcus epidermidis 12% and decreased growth of Pseudomonas aeruginosa 38.5% and its biofilm formation 17.7% at a concentration of 10 ㎍/mL compared to the untreated control group. Moreover, S. epidermidis was co-cultured with the representative dermatological bacterium Staphylococcus aureus in the same genus, the growth of S. epidermidis was increased 134 % and the growth of S. aureus was decreased 13%. These results suggest that fermented lysate using Lactobacillus plantarum APsulloc 331261 may be useful as a cosmetic ingredient that can control the balance of skin microbiome.

Synthesis and Structural Characterization of β-Carboline Compounds (β-카볼린 화합물의 합성 및 구조분석)

  • Byeon, Hong-Ju;Han, Min-Hui;Moon, Gi-Seong;Jung, Kyung-Hwan;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.676-684
    • /
    • 2019
  • The Pictet-Spengler reactions have widely known for the organic synthesis or biosynthesis of biologically active compounds, tetrahydro-${\beta}$-carbolines. We have developed the simple and efficient synthetic method for the synthesis of ${\beta}$-carbolines in water. Their chemical structures were characterized by nmr and UPLC/MS/QTOF. Calculated masses of compound 1 ($C_{17}H_{17}N_2$ 249.1392), 2 ($C_{17}H_{23}N_2$ 255.1861), 3 ($C_{19}H_{21}N_2O_3$ 325.1552) and 4 ($C_{19}H_{19}N_2O$ 279.1497) were almost identical with the detected masses of compound 1 (249.1315), 2 (255.1789), 3 (325.1460) and 4 (279.1364) respectively. Those synthesized four compounds showed strong antibiotic activity against the common E. coli.

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans (오존화 올리브 오일의 세균과 Candida alicans에 대한 항미생물 활성 효과)

  • Chung, Kyung Tae;Kim, Byoung Woo
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.223-230
    • /
    • 2019
  • Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.

Vitamin D maintains E-cadherin intercellular junctions by downregulating MMP-9 production in human gingival keratinocytes treated by TNF-α

  • Oh, Changseok;Kim, Hyun Jung;Kim, Hyun-Man
    • Journal of Periodontal and Implant Science
    • /
    • v.49 no.5
    • /
    • pp.270-286
    • /
    • 2019
  • Purpose: Despite the well-known anti-inflammatory effects of vitamin D in periodontal health, its mechanism has not been fully elucidated. In the present study, the effect of vitamin D on strengthening E-cadherin junctions (ECJs) was explored in human gingival keratinocytes (HGKs). ECJs are the major type of intercellular junction within the junctional epithelium, where loose intercellular junctions develop and microbial invasion primarily occurs. Methods: HOK-16B cells, an immortalized normal human gingival cell line, were used for the study. To mimic the inflammatory environment, cells were treated with tumor necrosis factor-alpha ($TNF-{\alpha}$). Matrix metalloproteinases (MMPs) in the culture medium were assessed by an MMP antibody microarray and gelatin zymography. The expression of various molecules was investigated using western blotting. The extent of ECJ development was evaluated by comparing the average relative extent of the ECJs around the periphery of each cell after immunocytochemical E-cadherin staining. Vitamin D receptor (VDR) expression was examined via immunohistochemical analysis. Results: $TNF-{\alpha}$ downregulated the development of the ECJs of the HGKs. Dissociation of the ECJs by $TNF-{\alpha}$ was accompanied by the upregulation of MMP-9 production and suppressed by a specific MMP-9 inhibitor, Bay 11-7082. Exogenous MMP-9 decreased the development of ECJs. Vitamin D reduced the production of MMP-9 and attenuated the breakdown of ECJs in the HGKs treated with $TNF-{\alpha}$. In addition, vitamin D downregulated $TNF-{\alpha}$-induced nuclear factor kappa B ($NF-{\kappa}B$) signaling in the HGKs. VDR was expressed in the gingival epithelium, including the junctional epithelium. Conclusions: These results suggest that vitamin D may avert $TNF-{\alpha}$-induced downregulation of the development of ECJs in HGKs by decreasing the production of MMP-9, which was upregulated by $TNF-{\alpha}$. Vitamin D may reinforce ECJs by downregulating $NF-{\kappa}B$ signaling, which is upregulated by $TNF-{\alpha}$. Strengthening the epithelial barrier may be a way for vitamin D to protect the periodontium from bacterial invasion.

Next-generation Probiotics, Parabiotics, and Postbiotics (Next-generation probiotics, parabiotics 및 postbiotics)

  • Cho, Kwang Keun;Lee, Seung Ho;Choi, In Soon;Lee, Sang Won
    • Journal of Life Science
    • /
    • v.31 no.6
    • /
    • pp.595-602
    • /
    • 2021
  • Human intestinal microbiota play an important role in the regulation of the host's metabolism. There is a close pathological and physiological interaction between dysbiosis of the intestinal microflora and obesity and metabolic syndrome. Akkermansia muciniphila, which was recently isolated from human feces, accounts for about 1-4% of the intestinal microbiota population. The use of A. muciniphila- derived external membrane protein Amuc_1100 and extracellular vesicles (EVs) could be a new strategy for the treatment of obesity. A. muciniphila is considered a next-generation probiotic (NGP) for the treatment of metabolic disorders, such as obesity. Faecalibacterium prausnitzii accounts for about 5% of the intestinal microbiota population in healthy adults and is an indicator of gut health. F. prausnitzii is a butyrate-producing bacterium, with anti-inflammatory effects, and is considered an NGP for the treatment of immune diseases and diabetes. Postbiotics are complex mixtures of metabolites contained in the cell supernatant secreted by probiotics. Parabiotics are microbial cells in which probiotics are inactivated. Paraprobiotics and postbiotics have many advantages over probiotics, such as clear chemical structures, safe dose parameters, and a long shelf life. Thus, they have the potential to replace probiotics. The most natural strategy to restore the imbalance of the intestinal ecosystem normally is to use NGPs among commensal bacteria in the gut. Therefore, it is necessary to develop new foods or drugs such as parabiotics and postbiotics using NGPs.

Effect of Selected Inoculant Applications on Chemical Compositions and Fermentation Characteristics of High Moisture Rye Silage

  • Lee, Seong Shin;Jeong, Seung Min;Seo, Myeong Ji;Joo, Young Ho;Paradhipta, Dimas Hand Vidya;Seong, Pil Nam;Kim, Sam Churl
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.3
    • /
    • pp.155-161
    • /
    • 2022
  • The aim of this study was to investigate the effect of isolated lactic acid bacteria (LAB) on the quality of high moisture rye silage. Rye forage (Secale cereale L.) was harvested at the heading stage (27.3% of dry matter (DM)) and cut into approximately 3-5 cm lengths. Then, the forage divided into 4 treatments with different inoculants: 1) No additives (CON); 2) Lactobacillus brevis strain 100D8 at a 1.2 × 105 colony-forming unit (cfu)/g of fresh forage (LBR); 3) Leuconostoc holzapfelii strain 5H4 at a 1.0 × 105 cfu/g of fresh forage (LHO); and 4) Mixture of LBR and LHO (1:1 ratio) applied at a 1.0 × 105 cfu/g of fresh forage (MIX). About 3 kg of forage from each treatment was ensiled into a 20 L mini-bucket silo in quadruplicate for 100 days. After silo opening, silage was collected for analyses of chemical compositions, in vitro nutrient digestibilities, fermentation characteristics, and microbial enumerations. The CON silage had the highest concentrations of neutral detergent fiber and acid detergent fiber (p = 0.006; p = 0.008) and a lowest in vitro DM digestibility (p < 0.001). The pH was highest in CON silage, while lowest in LBR and MIX silages (p < 0.001). The concentrations of ammonia-N, lactate, and acetate were highest in LBR silage (p = 0.008; p < 0.001; p < 0.001). Propionate and butyrate concentrations were highest in CON silage (p = 0.004; p < 0.001). The LAB and yeast counts were higher in CON and LHO silages compare to LBR and MIX silages (p < 0.001). However, the mold did not detect in all treatments. Therefore, this study could conclude that L. brevis 100D8 and Leu. holzapfelii strain 5H4 can improve the digestibility and anti-fungal activity of high moisture rye silage.

Gut microbiota profiling in aged dogs after feeding pet food contained Hericium erinaceus

  • Hyun-Woo, Cho;Soyoung, Choi;Kangmin, Seo;Ki Hyun, Kim;Jung-Hwan, Jeon;Chan Ho, Kim;Sejin, Lim;Sohee, Jeong;Ju Lan, Chun
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.937-949
    • /
    • 2022
  • Health concern of dogs is the most important issue for pet owners. People who have companied the dogs long-term provide the utmost cares for their well-being and healthy life. Recently, it was revealed that the population and types of gut microbiota affect the metabolism and immunity of the host. However, there is little information on the gut microbiome of dogs. Hericium erinaceus (H. erinaceus; HE) is one of the well-known medicinal mushrooms and has multiple bioactive components including polyphenol, β-glucan, polysaccharides, ergothioneine, hericerin, erinacines, etc. Here we tested a pet food that contained H. erinaceus for improvement in the gut microbiota environment of aged dogs. A total of 18 dogs, each 11 years old, were utilized. For sixteen weeks, the dogs were fed with 0.4 g of H. erinaceus (HE-L), or 0.8 g (HE-H), or without H. erinaceus (CON) per body weight (kg) with daily diets (n = 6 per group). Taxonomic analysis was performed using metagenomics to investigate the difference in the gut microbiome. Resulting from principal coordinates analysis (PCoA) to confirm the distance difference between the groups, there was a significant difference between HE-H and CON due to weighted Unique fraction metric (Unifrac) distance (p = 0.047), but HE-L did not have a statistical difference compared to that of CON. Additionally, the result of Linear discriminate analysis of effect size (LEfSe) showed that phylum Bacteroidetes in HE-H and its order Bacteroidales increased, compared to that of CON, Additionally, phylum Firmicutes in HE-H, and its genera (Streptococcus, Tyzzerella) were reduced. Furthermore, at the family level, Campylobacteraceae and its genus Campylobacter in HE-H was decreased compared to that of CON. Summarily, our data demonstrated that the intake of H. erinaceus can regulate the gut microbial community in aged dogs, and an adequate supply of HE on pet diets would possibly improve immunity and anti-obesity on gut-microbiota in dogs.