Browse > Article
http://dx.doi.org/10.5352/JLS.2021.31.6.595

Next-generation Probiotics, Parabiotics, and Postbiotics  

Cho, Kwang Keun (Department of Animal Resources Technology, Gyeongsang National University)
Lee, Seung Ho (Department of Nano-Bioengineering, Incheon National University)
Choi, In Soon (Department of Life Science, Silla University)
Lee, Sang Won (Department of Pharmaceutical Engineering, Gyeongsang National University)
Publication Information
Journal of Life Science / v.31, no.6, 2021 , pp. 595-602 More about this Journal
Abstract
Human intestinal microbiota play an important role in the regulation of the host's metabolism. There is a close pathological and physiological interaction between dysbiosis of the intestinal microflora and obesity and metabolic syndrome. Akkermansia muciniphila, which was recently isolated from human feces, accounts for about 1-4% of the intestinal microbiota population. The use of A. muciniphila- derived external membrane protein Amuc_1100 and extracellular vesicles (EVs) could be a new strategy for the treatment of obesity. A. muciniphila is considered a next-generation probiotic (NGP) for the treatment of metabolic disorders, such as obesity. Faecalibacterium prausnitzii accounts for about 5% of the intestinal microbiota population in healthy adults and is an indicator of gut health. F. prausnitzii is a butyrate-producing bacterium, with anti-inflammatory effects, and is considered an NGP for the treatment of immune diseases and diabetes. Postbiotics are complex mixtures of metabolites contained in the cell supernatant secreted by probiotics. Parabiotics are microbial cells in which probiotics are inactivated. Paraprobiotics and postbiotics have many advantages over probiotics, such as clear chemical structures, safe dose parameters, and a long shelf life. Thus, they have the potential to replace probiotics. The most natural strategy to restore the imbalance of the intestinal ecosystem normally is to use NGPs among commensal bacteria in the gut. Therefore, it is necessary to develop new foods or drugs such as parabiotics and postbiotics using NGPs.
Keywords
A. muciniphila; F. prausnitzii; next-generation probiotics; parabiotics; postbiotics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ottman, N., Huuskonen, L., Reunanen, J., Boeren, S., Klievink, J., Smidt, H., Belzer, C. and de Vos, W. M. 2016. Characterization of outer membrane proteome of Akkermansia muciniphila reveals sets of novel proteins exposed to the human intestine. Front. Microbiol. 7, 1157. doi: 10.3389/fmicb.2016.01157.   DOI
2 Tuohy, K. M. and Scott, K. P. 2015. "The microbiota of the human gastrointestinal tract: a molecular view" in diet-microbe interactions in the gut. pp. 1-15. Tuohy, K. M. and Del Rio, D. (eds.), Elsevier, London.
3 Ueno, N., Fujiya, M., Segawa, S., Nata, T., Moriichi, K., Tanabe, H., Mizukami, Y., Kobayashi, N., Ito, K. and Kohgo, Y. 2011. Heat-killed body of Lactobacillus brevis SBC8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier. Infamm. Bowel. Dis. 17, 2235-2250.   DOI
4 Viana, S. D., Nunes, S. and Reis, F. 2020. ACE2 imbalance as a key player for the poor outcomes in COVID-19 patients with age-related comorbidities-Role of gut microbiota dysbiosis. Ageing Res. Rev. 62, 101123. doi: 10.1016/j.arr.2020.101123.   DOI
5 Walker, A. W., Duncan, S. H., Louis, P. and Flint, H. J. 2014. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 22, 267-274.   DOI
6 Zhang, T., Li, Q., Cheng, L., Buch, H. and Zhang, F. 2019. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 12, 1109-1125.   DOI
7 Zoetendal, E. G., Raes, J., van den Bogert, B., Arumugam, M., Booijink, C. C., Troost, F. J., Bork, P., Wels, M., de Vos, W. M. and Kleerebezem, M. 2012. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J. 6, 1415-1426.   DOI
8 Zolkiewicz, J., Marzec, A., Ruszczynski, M. and Feleszko, W. 2020. Postbiotics-a step beyond pre- and probiotics. Nutrients 12, 2189. doi: 10.3390/nu12082189.   DOI
9 Zuo, T., Liu, Q., Zhang, F., Lui, G. C., Tso, E. Y., Yeoh, Y. K., Chen, Z., Boon, S. S., Chan, F. K., Chan, P. K. and Ng, S. C. 2020. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 70, 276-284.   DOI
10 Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799-809.   DOI
11 Scheiman, J., Luber, J. M., Chavkin, T. A., MacDonald, T., Tung, A., Pham, L. D., Wibowo, M. C., Wurth, R. C., Punthambaker, S., Tierney, B. T., Yang, Z., Hattab, M. W., Avila-Pacheco, J., Clish, C. B., Lessard, S., Church, G. M. and Kostic, A. D. 2019. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med. 25, 1104-1109.   DOI
12 Sanders, M. E., Lenoir-Wijnkoop, I., Salminen, S., Merenstein, D. J., Gibson, G. R., Petschow, B. W., Nieuwdorp, M., Tancredi, D. J., Cifelli, C. J., Jacques, P. and Pot, B. 2014. Probiotics and prebiotics: prospects for public health and nutritional recommendations. Ann. N. Y. Acad. Sci. 1309, 19-29.   DOI
13 Reichardt, N., Duncan, S. H., Young, P., Belenguer, A., McWilliam, L. C., Scott, K. P., Flint, H. J. and Louis, P. 2014. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323-1335.   DOI
14 Richards, L. B., Li, M., van Esch, B. C. A. M., Garssen, J. and Folkerts, G. 2016. The effects of short chain fatty acids on the cardiovascular system. Pharma. Nutr. 4, 68-111.
15 Ruiz, L., Delgado, S., Ruas-Madiedo, P., Sanchez, B. and Margolles, A. 2017. Bifidobacteria and their molecular communication with the immune system. Front. Microbiol. 8, 2345. doi: 10.3389/fmicb.2017.02345.   DOI
16 Schulz, E., Goes, A., Garcia, R., Panter, F., Koch, M., Muller, R., Fuhrmann, K. and Fuhrmann, G. 2018. Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. J. Control. Release. 290, 46-55.   DOI
17 Singh, A., Vishwakarma, V. and Singhal, B. 2018. Metabiotics: the functional metabolic signatures of probiotics: current state-of-art and future research priorities-metabiotics: probiotics efector molecules. Adv. Biosci. Biotechnol. 9, 720-726.
18 Zhou, L., Zhang, M., Wang, Y., Dorfman, R. G., Liu, H., Yu, T., Chen, X., Tang, D., Xu, L., Yin, Y., Pan, Y., Zhou, Q., Zhou, Y. and Yu, C. 2018. Faecalibacterium prausnitzii produces butyrate to maintain Th17/Treg balance and to ameliorate colorectal colitis by inhibiting histone deacetylase 1. Inflamm. Bowel. Dis. 24, 1926-1940.   DOI
19 Sommer, F. and Backhed, F. 2013. The gut microbiota- masters of host development and physiology. Nat. Rev. Microbiol. 11, 227-238.   DOI
20 Song, H., Yoo, Y., Hwang, J., Na, Y. C. and Kim, H. S. 2016. Faecalibacterium prausnitzii subspecies-level dysbiosis in the human gut microbiome underlying atopic dermatitis. J. Allergy Clin. Immunol. 137, 852-860.   DOI
21 Hold, G. L., Schwiertz, A., Aminov, R. I., Blaut, M. and Flint, H. J. 2003. Oligonucleotide probes that detect quantitatively significant groups of butyrate producing bacteria in human feces. Appl. Environ. Microbiol. 69, 4320-4324.   DOI
22 Nataraj, B. H., Ali, S. A., Behare, P. V. and Yadav, H. 2020. Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 19, 168. doi: 10.1186/s12934-020-01426-w.   DOI
23 Ahmadi Badi, S., Moshiri, A., Fateh, A., Rahimi Jamnani, F., Sarshar, M., Vaziri, F. and Siadat, S. D. 2017. Microbiota-derived extracellular vesicles as new systemic regulators. Front. Microbiol. 8, 1610. doi: 10.3389/fmicb.2017.01610.   DOI
24 Ashrafian, F., Behrouzi, A., Shahriary, A., Ahmadi Badi, S., Davari, M., Khatami, S., Rahimi Jamnani, F., Fateh, A., Vaziri, F. and Siadat, S. D. 2019. Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction. Gastroenterol. Hepatol. Bed. Bench. 12, 163-168.
25 Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J. P., Druart, C., Bindels, L. B., Guiot, Y., Derrien, M., Muccioli, G. G., Delzenne, N. M., de Vos, W. M. and Cani, P. D. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 110, 9066-9071.   DOI
26 Ashrafian, F., Shahriary, A., Behrouzi, A., Moradi, H. R., Keshavarz Azizi Raftar, S., Lari, A., Hadifar, S., Yaghoubfar, R., Ahmadi Badi, S., Khatami, S., Vaziri, F. and Siadat, S. D. 2019. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery Vector for amelioration of obesity in mice. Front. Microbiol. 10, 2155. doi: 10.3389/fmicb.2019.02155. eCollection 2019.   DOI
27 Assimakopoulos, S. F., Triantos, C., Maroulis, I. and Gogos, C. 2018. The role of the gut barrier function in health and disease. Gastroenterol. Res. 11, 261-263.   DOI
28 Brodmann, T., Endo, A., Gueimonde, M., Vinderola, G., Kneifel, W., de Vos, W. M., Salminen, S. and Gomez-Gallego, C. 2017. Safety of novel microbes for human consumption: practical examples of assessment in the European Union. Front. Microbiol. 8, 1725. doi: 10.3389/fmicb.2017.01725.   DOI
29 Belkaid, Y. and Hand, T. W. 2014. Role of the microbiota in immunity and inflammation. Cell 157, 121-141.   DOI
30 Mantziari, A., Salminen, S., Szajewska, H. and Malagon-Rojas, J. N. 2020. Postbiotics against pathogens commonly involved in pediatric infectious diseases. Microorganisms 8, 1510. doi: 10.3390/microorganisms8101510.   DOI
31 Konig, J., Wells, J., Cani, P. D., Garcia-Rodenas, C. L., Macdonald, T., Mercenier, A., Whyte, J., Troost, F. and Brummer, R. J. 2016. Human intestinal barrier function in health and disease. Clin. Transl. Gastroenterol. 7, e196. doi: 10.1038/ctg.   DOI
32 Miquel, S., Beaumont, M., Martin, R., Langella, P., Braesco, V. and Thomas, M. 2015. A proposed framework for an appropriate evaluation scheme for microorganisms as novel foods with a health claim in Europe. Microb. Cell Fact. 14, 48. doi: 10.1186/s12934-015-0229-1.   DOI
33 O'Toole, P. W., Marchesi, J. R. and Hill, C. 2017. Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 25, 17057. doi: 10.1038/nmicrobiol.2017.57.   DOI
34 Pique, N., Berlanga, M. and Minana-Galbis, D. 2019. Health benefts of heat-killed (Tyndallized) probiotics: an overview. Int. J. Mol. Sci. 20, 2534. doi: 10.3390/ijms20102534.   DOI
35 Foligne, B., Daniel, C. and Pot, B. 2013. Probiotics from research to market: the possibilities, risks and challenges. Curr. Opin. Microbiol. 16, 284-292.   DOI
36 Behrouzi, A., Vaziri, F., Rad, F. R., Amanzadeh, A., Fateh, A., Moshiri, Khatami, S. and Siadat, S. D. 2018. Comparative study of pathogenic and non-pathogenic Escherichia coli outer membrane vesicles and prediction of host-interactions with TLR signaling pathways. BMC Res. Notes 11, 539. doi: 10.1186/s13104-018-3648-3.   DOI
37 Moreno-Indias, I., Cardona, F., Tinahones, F. J. and Queipo-Ortuno, M. I. 2014. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front. Microbiol. 5, 190. doi: 10.3389/fmicb.2014.00190.   DOI
38 Cani, P. D. and de Vos, W. M. 2017. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8. 1765. doi:org/10.3389/fmicb.2017.01765   DOI
39 Derrien, M., Vaughan, E. E., Plugge, C. M. and de Vos, W. M. 2004. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469-1476.   DOI
40 DeWeerdt, S. 2018. How baby's first microbes could be crucial to future health. Nature 555, S18-S19.   DOI
41 Graf, D., Di Cagno, R., Fak, F., Flint, H. J., Nyman, M., Saarela, M. and Watzl, B. 2015. Contribution of diet to the composition of the human gut microbiota. Microb. Ecol. Health Dis. 26, 26164. doi: 10.3402/mehd.v26.26164.   DOI
42 Huang, X. L., Zhang, X., Fei, X. Y., Chen, Z. G., Hao, Y. P., Zhang, S., Zhang, M. M., Yu, Y. Q. and Yu, C. G. 2016. Faecalibacterium prausnitzii supernatant ameliorates dextran sulfate sodium induced colitis by regulating Th17 cell differentiation. World J. Gastroenterol. 22, 5201-5210.   DOI
43 Khan, I., Ullah, N., Zha, L., Bai, Y., Khan, A., Zhao, T., Che, T. and Zhang, C. 2019. Alteration of gut microbiota in inflammatory bowel disease(IBD): cause or consequence? IBD treatment targeting the gut microbiome. Pathogens 8, 126. doi: 10.3390/pathogens8030126.   DOI
44 Rajilic-Stojanovic, M., Biagi, E., Heilig, H. G., Kajander, K., Kekkonen, R. A., Tims, S. and de Vos, W. M. 2011. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792-1801.   DOI
45 Martens, E. C., Neumann, M. and Desai, M. S. 2018. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nat. Rev. Microbiol. 16, 457-470.   DOI
46 Bag, S., Ghosh, T. S. and Das, B. 2017. Faecalibacterium prausnitzii isolated from the gut of a healthy indian adult. Genome Announc. 5, doi:10.1128/genomeA.01286-17. PMC 5690339. PMID 29146862.   DOI
47 Belzer, C. and de Vos, W. M. 2012. Microbes inside-from diversity to function: the case of Akkermansia. ISME J. 6, 1449-1458.   DOI
48 Delgado, S., Cabrera-Rubio, R., Mira, A., Suarez, A. and Mayo, B. 2013. Microbiological survey of the human gastric ecosystem using culturing and pyrosequencing methods. Microb. Ecol. 63, 763-772.
49 Russo, E., Giudici, F., Fiorindi, C., Ficari, F., Scaringi, S. and Amedei, A. 2019. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan postbiotics in inflammatory bowel disease. Front. Immunol. 10, 2754. doi: 10.3389/fimmu.2019.02754. eCollection 2019.   DOI
50 Plovier, H., Everard, A., Druart, C., Depommier, C., Van Hul, M., Geurts, L., Chilloux, J., Ottman, N. and Duparc, T. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107-113.   DOI
51 Toyofuku, M., Nomura, N. and Eberl, L. 2019. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 17, 13-24.   DOI
52 Tap, J., Mondot, S., Levenez, F., Pelletier, E., Caron, C., Furet, J. P., Ugarte, E., Munoz-Tamayo, R., Paslier, D. L., Nalin, R., Dore, J. and Leclerc, M. 2009. Towards the human intestinal microbiota phylogenetic core. Environ. Microbiol. 11, 2574-2584.   DOI
53 Soverini, M., Turroni, S., Biagi, E., Quercia, S., Brigidi, P., Candela, M. and Rampelli, S. 2017. Variation of carbohydrate-active enzyme patterns in the gut microbiota of Italian healthy subjects and Type 2 Diabetes Patients. Front. Microbiol. 8, 2079. doi: 10.3389/fmicb.2017.02079.   DOI
54 The human microbiome project consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214.   DOI
55 Patterson, E., Ryan, P. M., Cryan, J. F., Dinan, T. G., Ross, R. P., Fitzgerald, G. F. and Stanton, C. 2016. Gut microbiota, obesity and diabetes. Postgrad. Med. J. 92, 286-300.   DOI