Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.2.223

Anti-microbial Activity Effects of Ozonized Olive Oil Against Bacteria and Candida albicans  

Chung, Kyung Tae (Department of Clinical Laboratory Science, Dong-Eui University)
Kim, Byoung Woo (Blue-Bio Industry RIC, Dong-Eui University)
Publication Information
Journal of Life Science / v.29, no.2, 2019 , pp. 223-230 More about this Journal
Abstract
Ozone is a gaseous molecule able to kill microorganisms, such as yeast, fungi, bacteria, and protozoa. However, ozone gas is unstable and cannot be used easily. In order to utilize ozone properly and efficiently, plant oil can be employed. Ozone reacts with C-C double bonds of fatty acids, converting to ozonized oil. In this reaction, ozonide is produced within fatty acids and the resulting ozonized oil has various biological functions. In this study, we showed that ozonized oil has antimicrobial activity against fungi and bacteria. To test the antimicrobial activity of ozonized oil, we produced ozonized olive oil. Ozonized olive oil was applied to Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Antimicrobial activity was assayed using the disk diffusion method following the National Committee for Clinical Laboratory Standards. Minimal inhibitory concentrations (MIC) were 0.25 mg for S. aureus, 0.5 mg for S. epidermidis, 3.0 mg for P. aeruginosa, and 1.0 mg for E. coli. Gram positive bacteria were more susceptible than Gram negative bacteria. We compared growth inhibition zones against S. aureus and MRSA, showing that the ozonized olive oil was more effective on MRSA than S. aureus. Furthermore, the ozonized olive oil killed C. albicans within an hour. These data suggested that ozonized olive oil could be an alternative drug for MRSA infection and could be utilized as a potent antimicrobial and antifungal substance.
Keywords
Antibiotics; antimicrobial activity; MRSA; ozonized olive oil;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Russo, A., Concia, E., Cristini, F., De Rosa, F. G., Esposito, S., Menichetti, F., Petrosillo, N., Tumbarello, M., Venditti, M., Viale, P., Viscoli, C. and Bassetti, M. 2016. Current and future trends in antibiotic therapy of acute bacterial skin and skin-structure infections. Clin. Microbiol. Infect. 22, S27-36.   DOI
2 Sachdeva, S. Raghuvamsi, V., Palur, K., Sudhakar, U. and Thenmalarchelvi, R. 2017. E. coli Group 1 capsular polysaccharide exportation nanomachinary as a plausible antivirulence target in the perspective of emerging antimicrobial resistance. Front. Microbiol. 8, 70.
3 Saldi, S. 2014. Image-based cytometric analysis of fluorescent viability and vitality staining methods for ale and lager fermentation yeast. J. Am. Soc. Brew. Chem. 72, 253-260.
4 Sawant, B. and Khan, T. 2017. Recent advances in delivery of antifungal agents for therapeutic management of candidiasis. Biomed. Pharmacother. 96, 1478-1490.   DOI
5 Sechi, L. A., Lezcano, I., Nunez, N., Espim, M., Dupre, I., Pinna, A., Molicotti, P., Fadda, G. and Zanetti, S. 2001. Antibacterial activity of ozonized sunflower oil (Oleozon). J. Appl. Microbiol. 90, 279-284.   DOI
6 Smith, N. L., Wilson, A. L., Gandhi, J., Vatsia, S. and Khan, S. A. 2017. Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Med. Gas. Res. 7, 212-219.   DOI
7 Song, J. H. and Joo, E. J. 2010. The crisis of antimicrobial resistance: Current status and future strategies. J. Kor. Med. Assoc. 53, 999-1005.   DOI
8 Terlizzi, M. E., Gribaudo, G. and Maffei, M. E. 2017. UroPa-thogenic Escherichia coli (UPEC) Infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566.   DOI
9 Travagli, V., Zanardi, I., Valacchi, G. and Bocci, V. 2010. Ozone and ozonated oils in skin diseases: a review. Mediators Inflamm. 2010, 610418.   DOI
10 Wierichs, R. J. and Meyer-Lueckel, H. 2015. Systematic review on noninvasive treatment of root caries lesions. J. Dent. Res. 94, 261-271.   DOI
11 Zahardis, J. and Petrucci, G. A. 2007. The oleic acid-ozone heterogeneous reaction system: products, kinetics, secondary chemistry, and atmospheric implications of a model system-a review. Atmos. Chem. Phys. 7, 1237-1274.   DOI
12 Zeng, J. and Lu, J. 2018. Mechanisms of action involved in ozone-therapy in skin diseases. Int. Immunopharmacol. 56, 235-241.   DOI
13 Zhang, Y. Q., Ren, S. X., Li, H. L., Wang, Y. X., Fu, G., Yang, J., Qin, Z. Q., Miao, Y. G., Wang, W. Y., Chen, R. S., Shen, Y., Chen, Z., Yuan, Z. H., Zhao, G. P., Qu ,D., Danchin, A. and Wen, Y. M. 2003. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol. Microbiol. 49, 1577-1593.   DOI
14 Kim, H. B. 2007. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Kor. J. Internal Med. 27, 120-130.
15 Ahmadi, K., Hashemian, A. M., Bolvardi, E. and Hosseini, P. K. 2016. Vancomycin-resistant Pseudomonas aeroginosa in the cases of trauma. Med. Arch. 70, 57-60.   DOI
16 Becher, D., Hempel, K., Sievers, S., Zuhlke, D., Pane-Farre, J., Otto, A., Fuchs, S., Albrecht, D., Bernhardt, J., Engelmann, S., Volker, U., van Dijl, J. M. and Hecker, M. 2009. A proteomic view of an important human pathogen-towards the quantification of the entire Staphylococcus aureus proteome. PLoS One 4, e8176.   DOI
17 Bocci, V. A. 2006. Scientific and medical aspects of ozone therapy. State of the art. Arch. Med. Res. 37, 425-435.   DOI
18 Clinical and Laboratory Standards Institutes (CLSI). 2015. Performance Standards for Antimicrobial Disk Susceptibility Test; Twelfth Edition. CLSI document M02-A12. Clinical and Laboratory Standards Institutes: Wayne, Pennsylvania, USA.
19 Gibson, J., Sood, A. and Hogan, D. A. 2009. Pseudomonas aeruginosa-Candida albicans interactions: Localization and fungal toxicity of a phenazine derivative. Appl. Environ. Microbiol. 75, 504-513.   DOI
20 Hecker, M., Mäder, U. and Volker, U. 2018. From the genome sequence via the proteome to cell physiology - Pathoproteomics and pathophysiology of Staphylococcus aureus. Int. J. Med. Microbiol. 308, 545-557.   DOI
21 Lister, P. D., Wolter, D. J. and Hanson, N. D. 2009. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin. Microbiol. Rev. 22, 582-610.   DOI
22 Kockerling, E., Karrasch, L., Schweitzer, A., Razum, O. and Krause, G. 2017. Public health research resulting from one of the world's largest outbreaks caused by entero- hemorrhagic Escherichia coli in Germany 2011: A Review. Front. Public Health 5, 332.   DOI
23 Kuhbacher, A., Burger-Kentischer, A. and Rupp, S. 2017. Interaction of Candida species with the skin. Microorganisms 5, pii: E32.
24 Kumar, T., Arora, N., Purim, G., Aravinda, K., Dixit, A. and Jatti, D. 2016. Efficacy of ozonized olive oil in the management of oral lesions and conditions: A clinical trial. Contemp. Clin. Dent. 7, 51-54.   DOI
25 Ngwenya, N., Ncube, E. J. and Parsons, J. 2013. Recent advances in drinking water disinfection: successes and challenges. Rev. Environ. Contam. Toxicol. 222, 111-170.
26 Martinelli, M., Giovannangeli, F., Rotunno, S., Trombetta, C. M. and Montomoli, E. 2017. Water and air ozone treatment as an alternative sanitizing technology. J. Prev. Med. Hyg. 58, E48-E52.
27 Mayer, F. L. Duncan, W. and Hube, B. 2013. Candida albicans pathogenicity mechanisms. Virulence 4, 119-128.   DOI
28 Montevecchi, M., Dorigo, A., Cricca, M. and Checchi, L. 2013. Comparison of the antibacterial activity of an ozonated oil with chlorhexidine digluconate and povidone-iodine. A disk diffusion test. New Microbiol. 36, 289-302.
29 Nemeth, J. Oesch, G. and Kuster, S. P. 2015. Bacteriostatic versus bactericidal antibiotics for patients with serious bacterial infections: systematic review and meta-analysis. J. Antimicrob. Chemo. 70, 382-395.   DOI
30 Nguyen, T. H., Park, M. D. and Otto, M. 2017. Host response to Staphylococcus epidermidis colonization and infections. Front. Cell. Infect. Microbiol. 7, 90.
31 Pommerville, J. 2016. Alcamo's Microbes and Society, pp. 238-249. 4th ed., Jones & Bartlett Learning: Burlington, MA, USA.
32 Miragaiam, M. 2018. Factors contributing to the evolution of mecA-mediated ${\beta}$-lactam resistance in Staphylococci: update and new insights from whole genome sequencing (WGS). Front. Microbiol. 9, 2723.   DOI
33 Rosenblum, J., Ge, C., Bohrerova, Z., Yousef, A. and Lee, J. 2012. Ozonation as a clean technology for fresh produce industry and environment: sanitizer efficiency and wastewater quality. J. Appl. Microbiol. 113, 837-845.   DOI