• Title/Summary/Keyword: Anti-Microbial

Search Result 546, Processing Time 0.027 seconds

Anti-oxidant and Anti-inflammation Activities of Prunus persica Flos (도화(桃花, Prunus persica Flos)의 항산화 및 항염증 활성)

  • Lee, Jin-Young;An, Bong-Jeun
    • Journal of Applied Biological Chemistry
    • /
    • v.53 no.3
    • /
    • pp.162-169
    • /
    • 2010
  • The solvent extracts of Prunus persica Flos were investigated for the activities of anti-oxidant and anti-inflammation to apply as a functional ingredient for cosmetic products. The electron donating ability of both ethanol (PPE) or acetone (PPA) extracts of P. persica Flos was above 90.0% at the concentration of 500ppm. The superoxide dismutase (SOD)-like activity of P. persica Flos extracts (PPE, PPA) were approximately 40.0% at 1,000 ppm. The xanthine oxidase inhibitory effect of P. persica Flos extracts (PPE, PPA) was approximately 30.0% at 1,000 ppm and equivalent to that of ascorbic acid. Hyaluronidase inhibition activity related to the anti-inflammation effect was 35.0% with the treatment of P. persica Flos extracts (PPW, PPE, PPA) at 1,000 ppm, respectively. In the experiment of anti-inflammation effect, P. persica Flos extracts (PPW, PPE, PPA) inhibited the generation of nitric oxide. In the antimicrobial activity test against the human skin-resident microflora such as Staphylococcus epidermidis and Propionibacterium acnes, a clear zone was identified from 4mg/disc in P. persica Flos (PPE) extract.

Anti-Cancer Effects of Green Tea by Either Anti- or Pro-Oxidative Mechanisms

  • Hayakawa, Sumio;Saito, Kieko;Miyoshi, Noriyuki;Ohishi, Tomokazu;Oishi, Yumiko;Miyoshi, Mamoru;Nakamura, Yoriyuki
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1649-1654
    • /
    • 2016
  • Tea derived from the leaves and buds of Camellia sinensis (Theaceae) is consumed worldwide. Green tea contains various components with specific health-promoting effects, and is believed to exert protective effects against diseases including cancer, diabetes and hepatitis, as well as obesity. Of the various tea components, the polyphenol catechins have been the subject of extensive investigation and among the catechins, (-)-epigallocatechin gallate has the strongest bioactivity in most cases. Our research group has postulated that hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ are targets of green tea constituents including (-)-epigallocatechin gallate for their anti-diabetes, anti-obesity, and anti-hepatitis effects, respectively. Published papers were reviewed to determine whether the observed changes in these factors can be correlated with anti-cancer effects of green tea. Two major action mechanisms of (-)-epigallocatechin gallate have been proposed; one associated with its anti-oxidative properties and the other with its pro-oxidative activity. When reactive oxygen species are assumed to be involved, our findings that (-)-epigallocatechin gallate downregulated hepatocyte nuclear factor-$4{\alpha}$, sterol regulatory element-binding proteins, and tumor necrosis factor-${\alpha}$ may explain the anti-cancer effect of green tea as well. However, further studies are required to elucidate which determinant directs (-)-epigallocatechin gallate action as an anti-oxidant or a pro-oxidant for favorable activity.

Biological Activities of Licorice F1 Lines and Content Analysis of Phytochemical Constituents

  • Park, Chun-Geon;Lee, Ah Young;Lee, Jeong Hoon;Lee, Jeong Min;Park, Jun Yeon;Lee, Sang-Hoon;Choi, Ae Jin;Park, Chung Berm;Cho, Eun Ju;Lee, Sanghyun
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2014
  • The biological activities of licorice F1 (Glycyrrhiza glabra ${\times}$ G. uralensis) lines (G) were investigated, revealing strong radical scavenging activity targeting 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl (${\cdot}OH$) radicals. At a concentration of $100{\mu}g/mL$, most of the licorice F1 lines scavenged DPPH and ${\cdot}OH$ by more than 80%. Gs-1, -2, and -6 can be considered good scavengers of DPPH radical and G-7 have higher antioxidant activity against ${\cdot}OH$ radical. In addition, licorice F1 lines exerted effective anti-microbial activities against Escherichia coli (Gs-12, -17, and -18) and Staphylococcus aureus (Gs-3, -4, -5, -21, and -26). Moreover, Gs-2, - 20, -31, and -32 effectively inhibited the growth of Helicobacter pylori. Among licorice F1 lines, Gs-25 exhibited high anti-inflammatory effects on nitric oxide produced by lipopolysaccharide- and interferon-${\gamma}$-activated RAW 264.7 cells. Furthermore, Gs-1, -12, and -20 inhibited the growth of AGS human gastric adenocarcinoma cells by more than 60% at a concentration of $100{\mu}g/mL$ and Gs-5, -11, -19, and -32 showed inhibitory effects against rat lens aldose reductase ($IC_{50}$ values, 1.69, 6.07, 6.12, and $4.54{\mu}g/mL$, respectively). The total content of glycyrrhizin (1), glycyrrhetinic acid (2), glabridin (3), and isoliquiritigenin (4) in licorice F1 lines was high in Gs-11, -15, and -30. The present study therefore indicated that Gs-2, -26, -31, and -32 of licorice F1 possessing strong anti-oxidative, anti-microbial, anti-inflammatory, anti-cancer, and aldose reductase inhibitory effects may be used as a possible source material for natural health supplements in the future.

Physiological activities of leaf extract of Lonicera morrowii A.Gray, a plant native to Ulleungdo (울릉도 자생식물인 섬괴불나무(Lonicera morrowii A.Gray) 잎 추출물의 생리활성)

  • Lee, Eun-Ho;Park, Hye-Jin;Hong, Eun-Jin;Akhmadjon, Sultanov;Kim, Byung-Oh;Jung, Hee-Young;Kang, In-Kyu;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.443-449
    • /
    • 2020
  • This study was performed to investigate total phenolic contents, anti-oxidant, biological disease-related enzyme inhibitory, and anti-microbial effects of extracts of Lonicera morrowii leaves prepared with water and 40% ethanol. Anti-oxidative activities of the extracts increased in a dose-dependent manner and were very high even at low phenolic concentration. At phenolic concentrations ranging between 50 and 200 ㎍/mL, the water and ethanol extracts inhibited 39.34-76.35 and 47.53-99.83% of xanthine oxidase activity, 30.21-79.06, and 59.40-87.14% of angiotensin converting enzyme activity, and 59.81-80.35 and 36.06-63.58% of α-glucosidase activity, respectively. All inhibitory effect were increased in a dose-dependent manner. In the paper disc agar diffusion assay against seven microbes, L. morrowii extracts had anti-bacteria activities against Helicobacter pylori, Propionibacterium acne but no effect against other bacteria. These results indicate that the extracts from L. morrowii leaves have the possibility to be developed as a physiologically functional source for prevention of adult diseases.

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives

  • Ghimire, Gopal Prasad;Nguyen, Huy Thuan;Koirala, Niranjan;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.441-451
    • /
    • 2016
  • Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.

Immunoactivities of the Protein-Polysaccharides of the Tips of the Growing Carpophores of Ganoderma lucidum (영지버섯(Ganoderma lucidum) 생장점으로부터 분리한 단백다당류의 면역활성)

  • Chung, Kyeong-Soo;Kim, Sang-Bum;Chung, Soo-Hyun
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.105-110
    • /
    • 1997
  • Two protein-polysaccharide fractions, GLA and GLB, respectively, were prepared from the pileus of the fully grown carpophores and the tips of the growing carpophores of Ganod erma lucidum. At a dose of 100mg/kg/day ip, GLA and GLB inhibited the growth of sarcoma 180 solid tumor in ICR mice by 56.3% and 81.8%, respectively. In a flow cytometric (FCM) analysis, GLA and GLB enhanced the formation of lymphoblasts of BALB/c, splenic leukocytes at a concentration of 100 ${\mu}$g/ml, by 38.3% and 61, 3%, respectively. When ip injected into ICR mice, GLB exerted anti-leukopenic effect against cyclophospamide (75mg/kg, ip) in that the leukocyte counts of the peripheral blood of the normal and the cyclophosphamide-treated mice. respectively. was (11.1 ${\pm}$ 3.8) ${\times}$ 10$^3$ and (4.0 ${\pm}$ 1.8) ${\times}$ 10$^3$, while the GLB-cyclophosphamide treated mice showed a leukocyte count of (10.8 ${\pm}$ 5.1) ${\times}$ 10$^3$ CELLS/${\mu}$l. These results suggest that GLB is a promising candidate for an effective, cancer immunotherapeutic agent.

  • PDF

Shikimate Metabolic Pathway Engineering in Corynebacterium glutamicum

  • Park, Eunhwi;Kim, Hye-Jin;Seo, Seung-Yeul;Lee, Han-Na;Choi, Si-Sun;Lee, Sang Joung;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1305-1310
    • /
    • 2021
  • Shikimate is a key high-demand metabolite for synthesizing valuable antiviral drugs, such as the anti-influenza drug, oseltamivir (Tamiflu). Microbial-based strategies for shikimate production have been developed to overcome the unstable and expensive supply of shikimate derived from traditional plant extraction processes. In this study, a microbial cell factory using Corynebacterium glutamicum was designed to overproduce shikimate in a fed-batch culture system. First, the shikimate kinase gene (aroK) responsible for converting shikimate to the next step was disrupted to facilitate the accumulation of shikimate. Several genes encoding the shikimate bypass route, such as dehydroshikimate dehydratase (QsuB), pyruvate kinase (Pyk1), and quinate/shikimate dehydrogenase (QsuD), were disrupted sequentially. An artificial operon containing several shikimate pathway genes, including aroE, aroB, aroF, and aroG were overexpressed to maximize the glucose uptake and intermediate flux. The rationally designed shikimate-overproducing C. glutamicum strain grown in an optimized medium produced approximately 37.3 g/l of shikimate in 7-L fed-batch fermentation. Overall, rational cell factory design and culture process optimization for the microbial-based production of shikimate will play a key role in complementing traditional plant-derived shikimate production processes.

Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir

  • Luang-In, Vijitra;Saengha, Worachot;Yotchaisarn, Manatchanok;Halaslova, Monika;Udomwong, Piyachat;Deeseenthum, Sirirat
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.403-415
    • /
    • 2018
  • The aims of this novel work were to determine the microbial strains and exopolysaccharide (EPS) producers in water kefir from Nakhon Ratchasima Province, Thailand. Thirty-three microbial strains were identified using 16S rRNA gene analysis consisting of 18 bacterial strains, as 9 strains of acetic acid bacteria (AAB), 9 strains of lactic acid bacteria (LAB), and 15 yeast strains. All bacteria were able to produce EPS with a diverse appearance on agar media containing different sugars at a concentration of 8%. Culture supernatants from AAB and LAB showed 31-64% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with the highest antioxidant activity of 64% from Acetobacter pasteurianus WS3 and WS6. Crude EPS from A. pasteurianus WS3 displayed the highest ferric reducing antioxidant power at 280 mM $FeSO_4/g$ EPS, greatest anti-tyrosinase activity at 20.35%, and highest EPS production of 1,505 mg EPS/L from 8% sucrose. These microbes offer beneficial health implications and their EPSs can be used as food additives and cosmetic ingredients.

Positive and negative regulation of the Drosophila immune response

  • Aggarwal, Kamna;Silverman, Neal
    • BMB Reports
    • /
    • v.41 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • Insects mount a robust innate immune response against a wide array of microbial pathogens. The hallmark of the Drosophila humoral immune response is the rapid production of anti-microbial peptides in the fat body and their release into the circulation. Two recognition and signaling cascades regulate expression of these antimicrobial peptide genes. The Toll pathway is activated by fungal and many Gram-positive bacterial infections, whereas the immune deficiency (IMD) pathway responds to Gram-negative bacteria. Recent work has shown that the intensity and duration of the Drosophila immune response is tightly regulated. As in mammals, hyperactivated immune responses are detrimental, and the proper down-modulation of immunity is critical for protective immunity and health. In order to keep the immune response properly modulated, the Toll and IMD pathways are controlled at multiple levels by a series of negative regulators. In this review, we focus on recent advances identifying and characterizing the negative regulators of these pathways.

Biotransformation of Rosamicin Antibiotic into 10,11-Dihydrorosamicin with Enhanced In Vitro Antibacterial Activity Against MRSA

  • Nguyen, Lan Huong;Nguyen, Huu Hoang;Shrestha, Anil;Sohng, Jae Kyung;Yoon, Yeo Joon;Park, Je Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.44-47
    • /
    • 2014
  • A biotransformation approach using microbes as biocatalysts can be an efficient tool for the targeted modification of existing antibiotic chemical scaffolds to create previously uncharacterized therapeutic agents. By employing a recombinant Streptomyces venezuelae strain as a microbial catalyst, a reduced macrolide, 10,11-dihydrorosamicin, was created from rosamicin macrolide. Its chemical structure was spectroscopically elucidated, and the new rosamicin analog showed 2-4-fold higher antibacterial activity against two strains of methicillin-resistant Staphylococcus aureus compared with its parent rosamicin. This kind of biocatalytic approach is able to expand existing antibiotic entities and can also provide more diverse therapeutic resources.