Browse > Article
http://dx.doi.org/10.4014/jmb.1510.10039

Advances in Biochemistry and Microbial Production of Squalene and Its Derivatives  

Ghimire, Gopal Prasad (Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Nguyen, Huy Thuan (Center for Molecular Biology, Institute of Research and Development, Duy Tan University)
Koirala, Niranjan (Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Sohng, Jae Kyung (Department of BT-Convergent Pharmaceutical Engineering, Institute of Biomolecule Reconstruction, Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.3, 2016 , pp. 441-451 More about this Journal
Abstract
Squalene is a linear triterpene formed via the MVA or MEP biosynthetic pathway and is widely distributed in bacteria, fungi, algae, plants, and animals. Metabolically, squalene is used not only as a precursor in the synthesis of complex secondary metabolites such as sterols, hormones, and vitamins, but also as a carbon source in aerobic and anaerobic fermentation in microorganisms. Owing to the increasing roles of squalene as an antioxidant, anticancer, and anti-inflammatory agent, the demand for this chemical is highly urgent. As a result, with the exception of traditional methods of the isolation of squalene from animals (shark liver oil) and plants, biotechnological methods using microorganisms as producers have afforded increased yield and productivity, but a reduction in progress. In this paper, we first review the biosynthetic routes of squalene and its typical derivatives, particularly the squalene synthase route. Second, typical biotechnological methods for the enhanced production of squalene using microbial cell factories are summarized and classified. Finally, the outline and discussion of the novel trend in the production of squalene with several updated events to 2015 are presented.
Keywords
Squalene; biosynthesis; microbial cell factory; terpenes; squalene production;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Okada S, Devarenne TP, Chappell J. 2000. Molecular characterization of squalene synthase from the green microalga Botryococcus braunii, race B. Arch. Biochem. Biophys. 373: 307-317.   DOI
2 Pan JJ, Solbiati JO, Ramamoorthy G, Hillerich BS, Seidel RD, Cronan JE, et al. 2015. Biosynthesis of squalene from farnesyl diphosphate in bacteria: three steps catalyzed by three enzymes. ACS Cent. Sci. 1: 77-82.   DOI
3 Park JH, Lee SY. 2010. Metabolic pathways and fermentative production of L-aspartate family amino acids. Biotechnol. J. 5: 560-577.   DOI
4 Polakowski T, Stahl U, Lang C. 1998. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl. Microbiol. Biotechnol. 49: 66-71.   DOI
5 Rohmer M, Seemann M, Horbach S, Bringer-Meyer S, Sahm H. 1996. Glyceraldehyde 3-phosphate and pyruvate as precursors of isoprenic units in an alternative non-mevalonate pathway for terpenoid biosynthesis. J. Am. Chem. Soc. 118: 2564-2566.   DOI
6 Ronco AL, Stéfani ED. 2013. Squalene: a multi-task link in the crossroads of cancer and aging. Funct. Foods Heal. Dis. 3: 462-476.
7 Saito K, Shirasago Y, Suzuki T, Aizaki H, Hanada K, Wakita T, et al. 2015. Targeting cellular squalene synthase, an enzyme essential for cholesterol biosynthesis, is a potential antiviral strategy against hepatitis C virus. J. Virol. 89: 2220-2232.   DOI
8 Shang N, Li Q, Ko TP, Chan HC, Li J, Zheng Y, et al. 2014. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog. 10: e1004114.   DOI
9 Sangari FJ, Pérez-Gil J, Carretero-Paulet L, García-Lobo JM, Rodríguez-Concepción M. 2010. A new family of enzymes catalyzing the first committed step of the methylerythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis in bacteria. Proc. Natl. Acad. Sci. USA 107: 14081-14086.   DOI
10 Schaepe S, Kuprijanov A, Simutis R, Lübbert A. 2014. Avoiding overfeeding in high cell density fed-batch cultures of Escherichia coli during the production of heterologous proteins. J. Biotechnol. 192: 146-153.   DOI
11 Seo CW, Yamada Y, Takada N, Okada H. 1983. Microbial transformation of squalene: terminal methyl group oxidation by Corynebacterium sp. Appl. Environ. Microbiol. 45: 522-525.
12 Spanova M, Daum G. 2011. Squalene - biochemistry, molecular biology, process biotechnology, and applications. Eur. J. Lipid Sci. Technol. 113: 1299-1320.   DOI
13 Tsujimoto M. 1916. A highly unsaturated hydrocarbon in shark live oil. J. Ind. Eng. Chem. 8: 889-896.   DOI
14 Wang JR, Lin JF, Guo LQ, You LF, Zeng XL, Wen JM. 2013. Cloning and characterization of squalene synthase gene from Poria cocos and its up-regulation by methyl jasmonate. World J. Microbiol. Biotechnol. 30: 613-620.   DOI
15 Wyre C, Overton TW. 2014. Use of a stress-minimisation paradigm in high cell density fed-batch Escherichia coli fermentations to optimise recombinant protein production. J. Ind. Microbiol. Biotechnol. 41: 1391-1404.   DOI
16 Xu R, Fazio GC, Matsuda SPT. 2004. On the origins of triterpenoid skeletal diversity. Phytochemistry 65: 261-291.   DOI
17 Zhang D, Jennings SM, Robinson GW, Poulter CD. 1993. Yeast squalene synthase: expression, purification, and characterization of soluble recombinant enzyme. Arch. Biochem. Biophys. 304: 133-143.   DOI
18 Yoon J, Matsuo Y, Matsuda S, Adachi K, Kasai H, Yokota A. 2008. Rubritalea sabuli sp. nov., a carotenoid- and squalene-producing member of the family Verrucomicrobiaceae, isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 58: 992-997.   DOI
19 Yamada Y, Kusuhara N, Okada H. 1977. Oxidation of linear terpenes and squalene variants by Arthrobacter sp. Appl. Environ. Microbiol. 33: 771-776.
20 Ye Y, Wang R, Jin L, Shen J, Li X, Yang T, et al. 2014. Molecular cloning and differential expression analysis of a squalene synthase gene from Dioscorea zingiberensis, an important pharmaceutical plant. Mol. Biol. Rep. 41: 6097-6104.   DOI
21 Zhao RY, Xiao W, Cheng HL, Zhu P, Cheng KD. 2010. Cloning and characterization of squalene synthase gene from Fusarium fujikuroi (Saw.) Wr. J. Ind. Microbiol. Biotechnol. 37: 1171-1182.   DOI
22 Zhao MW, Liang WQ, Zhang DB, Wang N, Wang CG, Pan YJ. 2007. Cloning and characterization of squalene synthase (SQS) gene from Ganoderma lucidum. J. Microbiol. Biotechnol. 17: 1106-1112.
23 Zhu L, Zhang X, Chang L, Wang A, Feng P, Han L. 2014. Molecular cloning, prokaryotic expression and promoter analysis of squalene synthase gene from Schizochytrium limacinum. Appl. Biochem. Microbiol. 50: 411-419.   DOI
24 Cantwell SG, Lau EP, Watt DS, Fall RR. 1978. Biodegradation of acyclic isoprenoids by Pseudomonas species. J. Bacteriol. 135: 324-333.
25 Auffray B. 2007. Protection against singlet oxygen, the main actor of sebum squalene peroxidation during sun exposure, using Commiphora myrrha essential oil. Int. J. Cosmet. Sci. 29: 23-29.   DOI
26 Berger A, Gremaud G, Baumgartner M, Rein D, Monnard I, Kratky E, et al. 2003. Cholesterol-lowering properties of Amaranth grain and oil in hamsters. Int. J. Vitam. Nutr. Res. 73: 39-47.   DOI
27 Bhargava P, Kumar K, Chaudhaery SS, Saxena AK, Roy U. 2010. Cloning, overexpression and characterization of Leishmania donovani squalene synthase. FEMS Microbiol. Lett. 311: 82-92.   DOI
28 Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS, et al. 2012. Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera(L.) Dunal. Gene 499: 25-36.   DOI
29 Bhattacharjee P, Shukla VB, Singhal RS, Kulkarni PR. 2001. Studies on fermentative production of squalene. World J. Microbiol. Biotechnol. 17: 811-816.   DOI
30 Chang MH, Kim HJ, Jahng KY, Hong SC. 2008. The isolation and characterization of Pseudozyma sp. JCC 207, a novel producer of squalene. Appl. Microbiol. Biotechnol. 78: 963-972.   DOI
31 Chan P, Tomlinson B, Lee CB, Lee YS. 1996. Effectiveness and safety of low-dose pravastatin and squalene, alone and in combination, in elderly patients with hypercholesterolemia. J. Clin. Pharmacol. 36: 422-427.   DOI
32 Fan KW, Aki T, Chen F, Jiang Y. 2010. Enhanced production of squalene in the thraustochytrid Aurantiochytrium mangrovei by medium optimization and treatment with terbinafine. World J. Microbiol. Biotechnol. 26: 1303-1309.   DOI
33 Drozdíková E, Garaiová M, Csáky Z, Obernauerov M, Hapala I. 2015. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity. Lett. Appl. Microbiol. 61: 77-84.   DOI
34 Chen G, Fan KW, Lu FP, Li Q, Aki T, Chen F, Jiang Y. 2010. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp. Nat. Biotechnol. 27: 382-389.
35 Cho C, Choi SY, Luo ZW, Lee SY. 2014. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnol. Adv. 33: 1455-1466.   DOI
36 Dellas N, Thomas ST, Manning G, Noel JP. 2013. Discovery of a metabolic alternative to the classical mevalonate pathway. Elife 2: e00672.   DOI
37 Fang HS. 2014. Frontier and future development of information technology in medicine and education. Lect. Notes Electr. Eng. 269: 1699-1705.
38 Furubayashi M, Li L, Katabami A, Saito K, Umeno D. 2014. Directed evolution of squalene synthase for dehydrosqualene biosynthesis. FEBS Lett. 588: 3375-3381.   DOI
39 Garaiová M, Zambojová V, Šimová Z, Gria P, Hapala I. 2014. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 14: 310-323.   DOI
40 Gershbein LL, Singh EJ. 1969. Hydrocarbons of dogfish and cod livers and herring oil. J. Am. Oil Chem. Soc. 46: 554-557.   DOI
41 Goldstein JL, Brown MS. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.   DOI
42 Gupta N, Sharma P, Santosh Kumar RJ, Vishwakarma RK, Khan BM. 2012. Functional characterization and differential expression studies of squalene synthase from Withania somnifera. Mol. Biol. Rep. 39: 8803-8812.   DOI
43 Ghimire GP, Oh TJ, Lee HC, Sohng JK. 2009. Squalenehopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Biotechnol. Lett. 31: 565-569.   DOI
44 Ghimire GP, Lee HC, Sohng JK. 2009. Improved squalene production via modulation of the methylerythritol 4-phosphate pathway and heterologous expression of genes from Streptomyces peucetius ATCC 27952 in Escherichia coli. Appl. Environ. Microbiol. 75: 7291-7293.   DOI
45 Glazyrina J, Materne E-M, Dreher T, Storm D, Junne S, Adams T, et al. 2010. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb. Cell Fact. 9: 42.   DOI
46 Heller JH, Pasternak VZ, Ransom JP, Heller MS. 1963. A new reticuloendothelial system stimulating agent (restim) from shark livers. Nature 199: 904-905.   DOI
47 Hong WK, Heo SY, Park HM, Kim CH, Sohn JH, Kondo A, Seo JW. 2013. Characterization of a squalene synthase from the thraustochytrid microalga Aurantiochytrium sp. KRS101. J. Microbiol. Biotechnol. 23: 759-765.   DOI
48 Huang ZR, Lin YK, Fang JY. 2009. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules 14: 540-554.   DOI
49 Jiang Y, Fan KW, Wong RTY, Chen F. 2004. Fatty acid composition and squalene content of the marine microalga Schizochytrium mangrovei. J. Agric. Food Chem. 52: 1196-1200.   DOI
50 Kasai H, Katsuta A, Sekiguchi H, Matsuda S, Adachi K, Shindo K, et al. 2007. Rubritalea squalenifaciens sp. nov., a squaleneproducing marine bacterium belonging to subdivision 1 of the phylum “Verrucomicrobia.” Int. J. Syst. Evol. Microbiol. 57: 1630-1634.   DOI
51 Kajikawa M, Kinohira S, Ando A, Shimoyama M, Kato M, Fukuzawa H. 2015. Accumulation of squalene in a microalga Chlamydomonas reinhardtii by genetic modification of squalene synthase and squalene epoxidase genes. PLoS One 10: e0120446.   DOI
52 Kalra S, Kumar S, Lakhanpal N, Kaur J, Singh K. 2013. Characterization of squalene synthase gene from Chlorophytum borivilianum (Sant. and Fernand.). Mol. Biotechnol. 54: 944-953.   DOI
53 Kamimura N, Hidaka M, Masaki H, Uozumi T. 1994. Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination. Appl. Microbiol. Biotechnol. 42: 353-357.
54 Katabami A, Li L, Iwasaki M, Furubayashi M, Saito K, Umeno D. 2015. Production of squalene by squalene synthases and their truncated mutants in Escherichia coli. J. Biosci. Bioeng. 119: 165-171.   DOI
55 Katsuki K, Bloch K. 1967. Studies on the biosynthesis of ergosterol in yeast. J. Biol. Chem. 242: 222-227.
56 Kelly GS. 1999. Squalene and its potential clinical uses. Altern. Med. Rev. 4: 29-36.
57 Kopicová Z, Vavreinová S. 2007. Occurrence of squalene and cholesterol in various species of Czech freshwater fish. Czech J. Food Sci. 25: 195-201.
58 Lange BM, Rujan T, Martin W, Croteau R. 2000. Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 97: 13172-13177.   DOI
59 Kuzuyama T. 2002. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci. Biotechnol. Biochem. 66: 1619-1627.   DOI
60 Lee S, Poulter CD. 2008. Cloning, solubilization, and characterization of squalene synthase from Thermosynechococcus elongatus BP-1. J. Bacteriol. 190: 3808-3816.   DOI
61 Li Q, Chen GQ, Fan KW, Lu FUP, Aki T, Jiang Y. 2009. Screening and characterization of squalene-producing thraustochytrids from Hong Kong mangroves. J. Agric. Food Chem. 57: 4267-4272.   DOI
62 Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY. 2012. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8: 536-546.   DOI
63 Lee PY, Yong VC, Rosli R, Gam LH, Chong PP. 2014. Cloning, expression and purification of squalene synthase from Candida tropicalis in Pichia pastoris. Protein Expr. Purif. 94: 15-21.   DOI
64 Leonardis A, Maciola V, Felice M. 1998. Rapid determination of squalene in virgin olive oils using gas-liquid chromatography [Olea europaea L. - Molise]. Ital. J. Food Sci. 1: 75-80.
65 Liu GC, Ahrens EH, Schreibman PH, Crouse JR. 1976. Measurement of squalene in human tissues and plasma: validation and application. J. Lipid Res. 17: 38-45.
66 Lynen F. 1967. Biosynthetic pathways from acetate to natural products. Pure Appl. Chem. 14: 137-167.   DOI
67 Manavalan LP, Chen X, Clarke J, Salmeron J, Nguyen HT. 2012. RNAi-mediated disruption of squalene synthase improves drought tolerance and yield in rice. J. Exp. Bot. 63: 163-175.   DOI
68 Mantzouridou F, Tsimidou MZ. 2010. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6. FEMS Yeast Res. 10: 699-707.   DOI
69 Nakagawa M, Yamaguchi T, Fukawa H, Ogata J, Komiyama S, Akiyama S, Kuwano M. 1985. Potentiation by squalene of the cytotoxicity of anticancer agents against cultured mammalian cells and murine tumor. Jpn. J. Cancer Res. 76: 315-320.
70 Martirosyan DM, Miroshnichenko LA, Kulakova SN, Pogojeva AV, Zoloedov VI. 2007. Amaranth oil application for coronary heart disease and hypertension. Lipids Health Dis. 6: 1.   DOI
71 Mantzouridou F, Naziri E, Tsimidou MZ. 2009. Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess. J. Agric. Food Chem. 57: 6189-6198.   DOI
72 Nakazawa A, Matsuura H, Kose R, Kato S, Honda D, Inouye I, Kaya K, Watanabe MM. 2012. Optimization of culture conditions of the thraustochytrid Aurantiochytrium sp. strain 18W-13a for squalene production. Bioresour. Technol. 109: 287-291.   DOI
73 Newmark HL. 1997. Squalene, olive oil, and cancer risk: a review and hypothesis. Cancer Epidemiol. Biomarkers Prev. 6: 1101-1103.
74 Naziri E, Mantzouridou F, Tsimidou MZ. 2011. Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means. J. Agric. Food Chem. 59: 9980-9989.   DOI
75 Ohkuma T, Otagiri K, Tanaka S, Ikekawa T. 1983. Intensification of host’s immunity by squalene in sarcoma 180 bearing ICR mice. J. Pharmacobiodyn. 6: 148-151.   DOI
76 Ohtake K, Saito N, Shibuya S, Kobayashi W, Amano R, Hirai T, et al. 2014. Biochemical characterization of the water-soluble squalene synthase from Methylococcus capsulatus and the functional analyses of its two DXXD(E)D motifs and the highly conserved aromatic amino acid residues. FEBS J. 281: 5479-5497.   DOI
77 Park JH, Oh JE, Lee KH, Kim JY, Lee SY. 2012. Rational design of Escherichia coli for L-isoleucine production. ACS Synth. Biol. 1: 532-540.   DOI