Browse > Article
http://dx.doi.org/10.4014/mbl.1804.04019

Microbial Strains and Bioactive Exopolysaccharide Producers from Thai Water Kefir  

Luang-In, Vijitra (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
Saengha, Worachot (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
Yotchaisarn, Manatchanok (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
Halaslova, Monika (Institute of Biotechnology and Food Science, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava)
Udomwong, Piyachat (International College of Digital Innovation, Chiang Mai University)
Deeseenthum, Sirirat (Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.4, 2018 , pp. 403-415 More about this Journal
Abstract
The aims of this novel work were to determine the microbial strains and exopolysaccharide (EPS) producers in water kefir from Nakhon Ratchasima Province, Thailand. Thirty-three microbial strains were identified using 16S rRNA gene analysis consisting of 18 bacterial strains, as 9 strains of acetic acid bacteria (AAB), 9 strains of lactic acid bacteria (LAB), and 15 yeast strains. All bacteria were able to produce EPS with a diverse appearance on agar media containing different sugars at a concentration of 8%. Culture supernatants from AAB and LAB showed 31-64% 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity with the highest antioxidant activity of 64% from Acetobacter pasteurianus WS3 and WS6. Crude EPS from A. pasteurianus WS3 displayed the highest ferric reducing antioxidant power at 280 mM $FeSO_4/g$ EPS, greatest anti-tyrosinase activity at 20.35%, and highest EPS production of 1,505 mg EPS/L from 8% sucrose. These microbes offer beneficial health implications and their EPSs can be used as food additives and cosmetic ingredients.
Keywords
Antioxidant; exopolysaccharide; kefir; lactic acid bacteria; tyrosinase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ali IAI, Akakabe Y, Moonmangmee S, Deeraksa A, Matsutani M, Yakushi T. 2011. Structural characterization of pellicle polysaccharides of Acetobacter tropicalis SKU1100 wild type and mutant strains. Carbohydr. Polym. 86: 1000-1006.   DOI
2 Grobben GJ, Smith MR, Sikkema J, de Bont JAM. 1996. Influence of fructose and glucose on the production of exopolysaccharides and the activities of enzymes involved in the sugar metabolism and the synthesis of sugar nucleotides in Lactobacillus delbrueckii subsp. Bulgaricus NCFB 2772. Appl. Microbiol. Biotechnol. 46: 279-284.   DOI
3 Looijesteijn PJ, Boels IC, Kleerebezem M, Hugenholtz J. 1999. Regulation of exopolysaccharide production by Lactococcus lactis subsp. cremoris by the sugar source. Appl. Environ. Microbiol. 65: 5003-5008.
4 Zhang T, Zhang C, Li S, Zhang Y, Yang Z. 2011. Growth and exopolysaccharide production by Streptococcus thermophilus ST1 in skim milk. Braz. J. Microbiol. 42: 1470-1478.   DOI
5 Yang JH, Mau JL, Ko PT, Huang LC. 2000. Antioxidant properties of fermented soybean broth. Food Chem. 71: 249-54.   DOI
6 Sakanaka S, Tachibana Y, Okada Y. 2005. Preparation and antioxidant properties of extracts of Japanese persimmon leaf tea (kakinoha-cha). Food Chem. 89: 569-675.   DOI
7 Moonmangmee S, Toyama H, Adachi O, Theeragool G, Lotong N, Matsushit K. 2002. Purification and characterization of a novel polysaccharide involved in the pellicle produced by a thermotolerant Acetobacter strain. Biosci. Biotechnol. Biochem. 66: 777-783.   DOI
8 Mozzi F, Savoy de Giori G, Oliver G, Font de Valdez G. 1996. Exopolysaccharide production by Lactobacillus casei in milk under different growth conditions. Milchwissenschaft. 51: 670-673.
9 Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J. 2015. Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol. Res. 171: 73-77.   DOI
10 Cerning J, Renard CM, Thibault JF, Bouillanne C, Landon M, Desmazeaud M et al. 1994. Carbon source requirements for exopolysaccharide production by Lactobacillus casei CG11 and partial structure analysis of the polymer. Appl. Environ. Microbiol. 60: 3914-3919.
11 Bajpai VK, Rather IA, Park YH. 2016. Partially purified exo-polysaccharide from Lactobacillus sakei Probio 65 with antioxidant, ${\alpha}$-glucosidase and tyrosinase inhibitory potential. J. Food Biochem. 40: 264-274.   DOI
12 Baek HS, Rho HS, Yoo JW, Ahn SM, Lee JY, Kim JA. 2008. The inhibitory effect of new hydroxamic acid derivatives on melanogenesis. Bull. Korean Chem. Soc. 29: 43-46.   DOI
13 Hima Bindu NSVSSSL, Singara Charya MA. 2017. Biological activities of exopolysaccharide from the mushroom. Fomitopsis feei. Int. J. Microbiol. Res. 8: 48-58.
14 Song YR, Song NE, Kim JH, Nho YC, Baik SH. 2011. Exopolysaccharide produced by Bacillus licheniformis strains isolated from Kimchi. J. Gen. Appl. Microbiol. 57: 169-175.   DOI
15 Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. 2010. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82: 1278-1283.   DOI
16 Diosma G, Romanin DE, Rey-Burusco MF, Alejandra L, Garrote LG. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 30: 43-53.   DOI
17 Nielsen B, Gurakan GC, Unlu G. 2014. Kefir: a multifaceted fermented dairy product. Probiotics Antimicrob. Proteins. 6: 123-135.   DOI
18 John SM, Deeseenthum S. 2015. Properties and benefits of kefir - A review. Songklanakarin J. Sci. Technol. 37: 275-282.
19 Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. 2013. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir-Part II. Food Hydrocoll. 30: 343-350.   DOI
20 Luang-In V, Saengha W, Deeseenthum, S. 2018. Characterization and bioactivities of a novel exopolysaccharide produced from lactose by Bacillus tequilensis PS21 isolated from Thai milk kefir. Microbiol. Biotechnol. Lett. 46: 9-17.   DOI
21 Miguel MG, Cardoso PG, Magalhaes-Guedes KT, Schwan RF. 2013. Identification and assessment of kefir potential for sugar/ethanol-resistance. Braz. J. Microbiol. 44: 113-118.   DOI
22 Silva KR, Rodrigues SA, Filho LX, Lima AS. 2009. Antimicrobial activity of broth fermented with kefir grains. Appl. Microbiol. Biotechnol. 152: 316-325.
23 Waldherr FW, Doll VM, MeiBner D, Vogel RF. 2010. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol. 27: 672-678.   DOI
24 Freitas F, Alves AV, Carvalheira M, Costa N, Oliveira R, Reis MA. 2009. Emulsifying behaviour and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohydr. Polym. 78: 549-556.   DOI
25 Mahapatra S, Banerjee D. 2013. Fungal Exopolysaccharide: production, composition and applications. Microbiol. Insights. 6: 1-16.
26 Parikh A, Madamwar D. 2006. Partial characterization of extracellular polysaccharides from Cyanobacteria. Bioresour. Technol. 97: 1822-1827.   DOI
27 Luang-In V, Deeseenthum S. 2016. Exopolysaccharide-producing isolates from Thai milk kefir and their antioxidant activities. LWTFood Sci. Technol. 73: 592-601.
28 Mitsue T, Tachibana K, Fujio Y. 1999. Efficient kefiran production by a mixed culture of Lactobacillus kefiranofaciens KF-75 and yeast strains. J. Biosci. Bioeng 87: 400.
29 Deeraksa A, Moonmangmee S, Toyama H, Yamada M, Adachi O, Matsushita K. 2005. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100. Microbiology 151: 4111-4120.   DOI
30 Mota R, Guimaraes R, Buttel Z, Rossi F, Colica G, Silva CJ, et al. 2013. Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110. Carbohydr. Polym. 92: 1408-1415.   DOI
31 Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
32 Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.   DOI
33 Rambaut A. 2012. FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. Edinburgh, UK: University of Edinburgh, Institute of Evolutionary Biology. Biology. .
34 Paulo EM, Vasconcelos MP, Oliveira IS, Affe HMJ, Nascimento R, MELO, I. S. de et al. 2012. An alternative method for screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Ciencia e Tecnologia de Alimentos. 32: 710-714.   DOI
35 Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power : The FRAP Assay. Anal. Biochem. 239: 70-76.   DOI
36 Chen Z, Shi J, Yang X, Liu Y, Nan B, Zhongfu W. 2016. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. Int. J. Dairy Technol. 69: 410-417.   DOI
37 Seeram NP, Adams LS, Zhang Y, Lee R, Sand D, Scheuller HS, et al. 2006. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 54: 9329-9339.   DOI
38 Sutherland IW. 2001. Microbial polysaccharides from gram-negative bacteria. Int. Dairy J. 11: 663-674.   DOI
39 Choi HK, Lim YS, Kim YS, Park SY, Lee CH, et al. 2008. Free-radicalscavenging and tyrosinase-inhibition activities of Cheonggukjang samples fermented for various times. Food Chem. 106: 564-568.   DOI
40 Li L, Wieme A, Spitaels F, Balzarini T, Nunes O, Manaia CM, et al. 2014. Acetobacter sicerae sp. nov., isolated from cider and kefir, and identification of strains of the genus Acetobacter by dnaK, groEL and rpoB sequence analysis. Int. J. Syst. Evol. Microbiol. 64: 2407-2415.   DOI
41 Wang Y, Xu N, Xi A, Ahmed Z, Zhang B, Bai X. 2009. Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotech. 84: 341-347.   DOI
42 Rao BP, Sudharsan K, Sekaran RCHG, Mandal AB. 2013. Characterization of exopolysaccharide from Bacillus amyloliquefaciens BPRGS for its bioflocculant activity. Int. J. Sci. Eng. Res. 4: 1696-1704.
43 van Casteren WHM, de Waard P, Dijkema C, Schols HA, Voragen AGJ. 2000. Structural characterisation and enzymatic modification of the exopolysaccharide produced by Lactococcus lactis subsp. cremoris B891. Carbohydr. Res. 327: 411-422.   DOI
44 Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M. 2013. Antifungal activity of Meyerozyma guilliermondii: identification of activity compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33: 243-251.   DOI
45 Osimani A, Garofalo C, Aquilanti L, Milanovic V, Clementi F. 2015. Unpasteurised commercial boza as a source of microbial diversity. Int. J. Food Microbiol. 194: 62-70.   DOI
46 Gulitz A, Stadie J, Wenning M, Ehrmann MA, vogel RF. 2011. The microbial diversity of water kefir. Int. J. Food Microbiol. 151: 284-288.   DOI
47 Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG. 1992. Structure of the exopolysaccharide produced by Lactococcus lactis sub cremoris H414 grown in a defined medium or skimmed-milk. Carbohydr. Res. 231: 273-291.   DOI