• Title/Summary/Keyword: Anthropogenic sources

Search Result 244, Processing Time 0.073 seconds

Emission Control Technologies for N2O from Adipic Acid Production Plants (아디픽산 제조공정으로부터 발생되는 N2O에 대한 배출제어기술)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.20 no.6
    • /
    • pp.755-765
    • /
    • 2011
  • Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.

A Comparison between Wet-only and Bulk Deposition at Two Forest Sites in Japan

  • Imamura, Naohiro;Iwai, Noriko;Tanaka, Nobuaki;Ohte, Nobuhito
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.67-77
    • /
    • 2018
  • To investigate the effects of forest and the surrounding natural and anthropogenic sources on the bulk depositions on forested land, this study examined differences in ion concentrations between wet-only and bulk samples at two forested sites in Japan. The surrounding natural and anthropogenic sources at each site were different; Shirasaka is in a rural area and Tanashi is an urban environment. The volume weighted (vw) mean concentrations of $K^+$ and $Ca^{2+}$ in the bulk samples were significantly (p<0.05) higher than those in the wet-only samples at both sites. The forest canopy and a nearby incineration plant were hypothesized to be the main sources of $K^+$ contaminants at Shirasaka and Tanashi, respectively. The transport of sea salt and urban dust may explain the presence of enriched $Ca^{2+}$ concentrations in the bulk samples at Shirasaka and Tanashi, respectively. The $NH_4{^+}$ concentrations in the Shirasaka bulk samples were significantly (p<0.05) lower than those in the wet-only samples. The vw mean $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations in both sample types were not significantly different at either site. This study demonstrated that the ion concentration differences between wet-only and bulk samples were affected by nearby natural and anthropogenic sources even at forest sites, similar to previous findings for non-forested locations. However, the $K^+$ concentration differences between wet-only and bulk samples may be higher owing to forest sources, even in the absence of anthropogenic sources.

Trace Element Analysis and Source Assessment of Parking Lot Dust in Large Shopping Mall (대형유통업소주차장의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Song, Hee-Bong;Ahn, Jeong-Eem;Jung, Yeoun-Wook;Yoon, Ho-Suk;Keum, Jong-Lok;Do, Hwa-Seok;Kim, Sun-Suk;Kim, Jong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.168-176
    • /
    • 2012
  • A total of 48 dust samples were collected from large shopping mall parking lots in Daegu metropolitan city in March 2011. Samples were sieved through a 100 ${\mu}m$ mesh and the concentration of 14 elements have been determined using by ICP after acid extraction. Results showed that Ca, Fe, K, Mg, Mn, Na and V were affected by natural sources while Cd, Cr, Cu, Ni, Pb and Zn were affected by anthropogenic sources. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic trace element concentrations of ground roof dust were higher than those of ground and underground indoor dust. A large percentage of trace elements came from natural sources rather than anthropogenic sources. The percentage composition of chemicals of ground roof dust were higher than those of ground and underground indoor dust. This study showed that investigated parking lots were rarely contaminated with hazardous heavy metals. The heavy metal pollution of ground roof were higher than those of ground and underground indoors. The correlation analysis among trace elements suggest that components in ground roof were more highly correlated than those in ground and underground indoor. Also anthropogenic trace element levels were well correlated with parking lot age and parking density.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.

Elemental Composition of PM2.5 Particulate with a 3-Stage DRUM Sampler during Spring and Summer Seasons in Urban Area of Gwangju, Korea (3-Stage DRUM 샘플러를 이용한 광주 도심지역의 봄철과 여름철 PM2.5 원소적 조성 비교)

  • Ryu S.Y.;Kim Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.6
    • /
    • pp.699-708
    • /
    • 2005
  • To characterize the elemental composition of fine particles in urban area, $PM_{2.5}$ was collected by a 3-stage DRUM impactor at Gwangju during spring and summer. Time and size resolved concentrations for 19 trace elements were obtained by synchrotron X-Ray fluorescence analysis. Trace elements in summer were distributed in smaller size range compared to those in spring. Almost trace element concentrations in fine particles were highly increased during the Asian dust. In spring, soil elements such as Si, K, Ca, Ti and Fe had low enrichment factors indicating the dominant influence of soil dust. However, all elements had high enrichment factors in summer implying that these elements could be emitted from the anthropogenic sources. Factor analysis was conducted with the elemental composition data in order to identify anthropogenic sources of aerosols in urban area during spring and summer. Fine particles in spring have several sources such as soil dust originating from China continental region, coal and oil combustion, biomass burning, sea salt, ferrous and nonferrous metal sources. On the other hand, fine particles in summer were influenced by road dust, gasoline vehicle as well as coal and oil combustion, sea salt, ferrous and nonferrous metal sources.

Trace Elements and Source Assessment of Street Dust in Daegu, Korea (대구지역 도로먼지에 함유된 미량원소성분과 오염원 평가)

  • Song, Hee-Bong;Lee, Eun-Young;Do, Hwa-Seok;Jung, Cheol-Su;Shin, Dong-Chan;Lee, Myoung-Sook;Paek, Yoon-Kyoung;Jeon, Seong-Suk;Shin, Won-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.793-800
    • /
    • 2007
  • A total of 48 samples of street dust were collected in Daegu area during April and May 2006, were sieved below 100 ${\mu}m$, and analysed by ICP for the analysis of 14 elements after an acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na and V were influenced by natural sources such as soil and dust, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by urban anthropogenic sources such as fuel combustion and waste incineration. The measured values were remarkably higher in components from natural sources than in components from urban anthropogenic sources. The concentrations of trace elements in Daegu area were generally higher than in other foreign cities. Samples originated from industrial and commercial areas had higher concentrations of trace elements and pollution indices of heavy metals than those from residential and green areas. The correlation analysis among trace elements indicated that the correlations among components from urban anthropogenic sources were much significant, while those among components from natural sources were less correlated. In addition there were significant correlations between traffic density and components from urban anthropogenic sources.

Aerosol Characteristics at Tokchok Island in the Yellow Sea (황해상 덕적도의 대기 에어로졸 특성)

  • 이승복;배귀남;김용표;진현철;윤용석;문길주
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.4
    • /
    • pp.305-316
    • /
    • 2002
  • Various air pollutants were measured at Tokchok Island in the Yellow Sea that is about 50 km distant from Incheon since April 1999. This study was undertaken to help understanding the level of air pollution and its distribution characteristics over the Yellow Sea. The geographical characteristics of the air pollution monitoring station and emission inventories of Tokchok Island are introduced. The mass concentrations and chemical compositions of TSP and P $M_{2.5}$ measured until March 2000 are discussed in this paper. The overall average mass concentrations are about 37.2 $\mu\textrm{g}$/㎥ for TSP and 18.7 $\mu\textrm{g}$/㎥ for P $M_{2.5}$ , respectively, which are similar to or a little lower than the values observed in other background sites at Kangwha and Taean. However, they are much lower than those observed at Qingdao in China. The low mass concentration and major anthropogenic ion concentrations in aerosols collected at Tokchok Island show that local sources are not dominant at Tokchok Island. The estimated average fractions of anthropogenic non-sea-salt sulfate to the total sulfate concentration of TSP and P $M_{2.5}$ are greater than 80% for both sizes. It hence suggests that the sulfate be mainly affected by anthropogenic sources. If we consider the average mass ratio of P $M_{2.5}$ to TSP, the mass fractions of anthropogenic species to P $M_{2.5}$ , and the molar ratio of nss S $O_4$$^{2-}$ to total N $O_{3-}$, it may be possible to infer that a part of anthropogenic species measured at Tokchok Island be transported from China. The characteristics of neutralization of nss S $O_4$$^{2-}$ and the particle size of major ions are also discussed.

Characteristics of Trace Element Concentrations in Dust by Facilities and Areas in Daegu, Korea (대구지역 축적먼지 중 미량원소성분의 시설별 및 지역별 농도분포)

  • Song, Hee-Bong;Do, Hwa-Seok;Kwak, Jin-Hee;Kim, Jong-Woo;Kang, Jae-Hyoung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • Dust samples have been collected from streets, schools, subway stations and households in Daegu metropolitan city. Samples were sieved through a 100 ${\mu}m$ mesh and the concentration of 14 elements have been determined using by ICP after acid extraction. Results showed that Ca, Fe, K, Mg, Mn, Na and V were influenced by natural sources while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. In particular, school dust had higher levels of Ca and Pb and subway station dust had higher levels of Cu and Zn. The percentage composition of chemicals from subway stations, households, and schools were remarkably higher in components from anthropogenic sources than that from streets. It is well recognized that anthropogenic sources were affected by indoor dust. Results of pollution index of hazardous heavy metals indicated that schools, households, and subway stations were more contaminated than streets and urban areas typically had higher pollution index than rural areas. The correlation analysis among trace elements seem to suggest that there were correlations between components of soil/road dust resuspension, and components of waste incineration and fuel combustion.

Surface Flux Measurements of Methane from Lamdfills by Closed Chamber Technique and its Validation (플럭스챔버에 의한 매립지표면 메탄의 배출량 측정과 분석)

  • 김득수;장영기;전의찬
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.5
    • /
    • pp.499-509
    • /
    • 2000
  • Next to carbon dioxide, methane is the second largest contributor to global warming among anthropogenic greenhouse gases. Methane is emitted into the atmosphere from both natural and anthropogenic sources. Natural sources include wetlands, termites, wildries, ocean and freshwater. Anthropogenic sources include landfill, natural gas and oil production, and agriculture. These manmade sources account for about 70% of total global methane emissions; and among these, landfill accounts for approximately 10% of total manmade emissions. Solid waste landfills produce methane as bacteria decompose organic wastes under anaerobic conditions. Methane accounts for approximately 45 to 50 percent of landfill gas, while carbon dioxide and small quantities of other gases comprise the remaining to 50 to 55 percent. Using the closed enclosure technique, surface emission fluxes of methane from the selected landfill sites were measured. These data were used to estimate national methane emission rate from domestic landfills. During the three different periods, flux experiments were conducted at the sites from June 30 through December 26, 1999. The chamber technique employed for these experiments was validated in situ. Samples were collected directly by on-site flux chamber and analyzed for the variation of methane concentration by gas chromatography equipped with FID. Surface emission rates of methane were found out to vary with space and time. Significant seasonal variation was observed during the experimental period. Methane emission rates were estimated to be 64.5$\pm$54.5mgCH$_4$/$m^2$/hr from Kimpo landifll site. 357.4$\pm$68.9mgCH$_4$/$m^2$/hr and 8.1$\pm$12.4mgCH$_4$/$m^2$/hr at KwanJu(managed and unmanaged), 472.7$\pm$1056mgCH$_4$/$m^2$/hr at JonJu, and 482.4$\pm$1140 mgCH$_4$/$m^2$/hr at KunSan. These measurement data were used for the extrapolation of national methane emission rate based on 1997 national solid waste data. The results were compared to those derived by theoretical first decay model suggested by IPCC guidelines.

  • PDF

Monthly Variation of n-alkanes concentration in PM2.5 of the Anmyeon Island (안면도 대기 중 PM2.5 내 n-alkanes의 월별 농도 분포 특성)

  • Kim, Ki Ae;Lee, Jong Sik;Kim, Eun Sil;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.166-176
    • /
    • 2018
  • The n-alkanes which are stable compounds in the atmosphere are emitted by anthropogenic sources and biological sources. The goal of this study is to understand characteristics of n-alkane distributions in $PM_{2.5}$ of the Anmyeon Island which is one of background site in Korea. The concentration of n-alkanes in $PM_{2.5}$ was measured at Anmyeon Island for one year from June 2015 to May 2016. The average concentration of total n-alkanes (${\sum}$ n-alkanes) from C20 to C34 was $14.02{\pm}10.26ng\;m^{-3}$ and ranged from 1.77 to $47.65ng\;m^{-3}$. Various diagnostic parameters were used to identify the source. As a result, it is considered that Anmyeon Island had a large influence of biological sources during non-heating period, while the influence of anthropogenic emission during the heating period was significant. Principle Component Analysis (PCA) was performed and yielded three components that accounted for 93.6% of the total variance in n-alkanes. Factor 1, which accounted for 42.3% of the total variance, indicated anthropogenic source including fossil fuel and biomass combustion, while, Factor 3 was interpreted as the biological sources such as plant wax.