Browse > Article
http://dx.doi.org/10.5322/JES.2011.20.6.755

Emission Control Technologies for N2O from Adipic Acid Production Plants  

Kim, Moon-Hyeon (Department of Environmental Engineering, Daegu University)
Publication Information
Journal of Environmental Science International / v.20, no.6, 2011 , pp. 755-765 More about this Journal
Abstract
Nitrous oxide ($N_2O$) is one of six greenhouse gases listed up in the Kyoto Protocol, and it effects a strong global warming because of its much greater global warming potential (GWP), by 310 times over a 100-year time horizon, than $CO_2$. Although such $N_2O$ emissions from both natural and anthropogenic sources occur, the latter can be controlled using suitable abatement technologies, depending on them, to reduce $N_2O$ below acceptable or feasible levels. This paper has extensively reviewed the anthropogenic $N_2O$ emission sources and their related compositions, and the state-of-the-art non-catalytic and catalytic technologies of the emissions controls available currently to representative, large $N_2O$ emission sources, such as adipic acid production plants. Challengeable approaches to this source are discussed to promote establishment of advanced $N_2O$ emission control technologies.
Keywords
Nitrous oxide ($N_2O$); Global warming; Anthropogenic sources; Adipic acid; Catalytic emission controls;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Winter, F., Wartha, C., Hofbauer, H., 1999, NO and $N_2O$ formation during the combustion of wood, straw, malt waste and peat, Bioresource Technol., 70, 39-49.   DOI
2 Wojtowicz, M. A., Pels, J. R., Moulijn, J. A., 1993, Combustion of coal as a source of N20 emission, Fuel Proc. Technol., 34, 1-71.   DOI
3 Yang, W. H., Kim, M. H., 2006, Catalytic reduction of $N_2O$ by $H_2$ over well-characterized Pt surfaces, Korean J. Chem. Eng., 23, 908-918.   과학기술학회마을   DOI
4 UN, 1998, Kyoto Protocol to the United Nations framework convention on climate change, United Nations, New York, USA, 1-20.
5 IPCC, 2001, Climate change 2001: The scientific basis. Contribution of the working group I to the 3rd assessment report of the IPCC, Houghton, J. T., Ding, Y., Griggs, D. J., Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., Johnson, C. A. (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA, 1-881.
6 Kapteijin, F., Rodriguez-Mirasol, J., Moulijn, J. A., 1996, Heterogeneous catalytic decomposition of nitrous oxide, Appl. Catal. B, 9, 25-64.   DOI
7 Kim, M. H., 2008, HCCI combustion engines with ultra low $CO_2$ and $NO_x$ emissions and new catalytic emission control technology, J. Environ. Sci., 17, 1413-1419.   DOI
8 Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2001, Dissociative $N_2O$ adsorption on supported Pt, J. Catal., 204, 348-357.   DOI
9 Kim, M. H., Ebner, J. R., Friedman, R. M., Vannice, M. A., 2002, Determination of metal dispersion and surface composition in supported Cu-Pt catalysts, J. Catal., 208, 381-392.   DOI
10 Kim, M. H., Ham, S. W., 2010, Determination of $N_2O$ emissions levels in the selective reduction of $NO_x$ by $NH_3$ over an on-site-used commercial $V_2O_5-WO_3/TiO_2$ catalyst using a modified gas cell, Top. Catal., 53, 597-607.   DOI
11 Machida, T., Nakazawa, T., Fujii, Y., Aoki, S., Watanabe, O., 1995, Increase in the atmospheric nitrous oxide concentration during the last 250 years, Geophys. Res. Lett., 22, 2921-2924.   DOI
12 McGhee, W. D., 1998, Selective introduction of active sites for hydroxylation of benzene, US Patent 5,808,167.
13 Perez-Ramirez, J., Kapteijn, F., Schoffel, K., Moulijn, J. A., 2003, Formation and Control of $N_2O$ in nitric acid production: Where do we stand today, Appl. Catal. B, 44, 117-151.   DOI
14 Centi, G., Perathoner, S., Vazzana, F., Marella, M., Tomaselli, M., Mantegazza, M., 2000, Novel catalysts and catalytic technologies for $N_2O$ removal from industrial emissions containing $O_2$, $H_2O$ and $SO_2$, Adv. Environ. Res., 4, 325-338.   DOI
15 Choe, J. S., Cook, P. J., Petrocelli, F. P., 1993, Developing $N_2O$ abatement technology for the nitric acid industry, Proceedings of the 1993 ANPSG Conference, San Destin, 6 October, Florida, USA, 1-13.
16 Wigley, T. M. L., 1998, The Kyoto Protocol: $CO_2, CH_4$ and climate implications, Geophys. Res. Lett., 25, 2285-2288.   DOI
17 Odaka, M., Koike, N., Suzuki, H., 2000, Influence of catalyst deactivation on $N_2O$ emissions from automobiles, Chemosphere: Glob. Change Sci., 2, 413-423.   DOI
18 Ovchinnikova, E. V., Chumachenko, V. A., Piryutko, L. V., Kharitonov, A. C., Noskov, A. S., 2009, Detoxication of nitrose gases formed in the production of adipic acid: The two-stage catalytic cleaning process, Catal. Ind., 1, 76-84.   DOI
19 Panov, G. I., Uriarte, A. K., Rodkin, M. A., Sobolev, V. I., 1998, Generation of active oxygen species on solid surfaces: Opportunity for novel oxidation technologies over zeolites, Catal. Today, 41, 365-385.   DOI
20 Perez-Ramirez, J., Kapteijn, F., Mul, G., Xu, X., Moulijn, J. A., 2002, Ex-framework FeZSM-5 for control of $N_2O$ in tail-gases, Catal. Today, 76, 55-74.   DOI
21 Rahn, T., Wahlen, M., 2000, A reassessment of the global isotopic budget of atmospheric nitrous oxide, Glob. Biogeochem. Cycl., 14, 537-543.   DOI
22 Ruszak, M., Inger, M., Witkowski, S., Wilk, M., Kotarba, A., Sojka., Z., 2008, Selective $N_2O$ removal from the process gas of nitric acid plants over ceramic 12CaO․$7Al_2O_3$ catalyst, Catal. Lett., 126, 72-77.   DOI
23 Teles, J., RoBler, B., Pinkos, R., Genger, T., Preiss, T., 2005, Method for producing cyclododecanone, WO 2005/030,689 A2.
24 Thiemens, M. H., Trogler, W. C., 1991, Nylon production: An unknown source of atmospheric nitrous oxide, Science, 251, 932-934.   DOI
25 EFMA, 2000, Best available technologies for pollution prevention and control in the European fertilizer industry: Production of nitric acid, Booklet No. 2, European Fertilizer Manufactures' Association, Brussels, Belgium, 1-32.
26 Neveu, B., Hamon, C., Malefant, K., 1999, Catalytic reduction of nitrous oxide content in gases, French Patent WO 99/34,901.
27 Dann, T. W., Schulz, K. H., Mann, M., Collings, M., 1995, Supported rhodium catalysts for nitrous oxide decomposition in the presence of NO, $CO_2$, $SO_2$ and CO, Appl. Catal. B, 6, 1-10.   DOI
28 de Soete, G. G., 1993, Nitrous oxide from combustion and industry: Chemistry, emissions and control, Rev. Inst. Franc. Petr., 48, 413-451.   DOI
29 EPA, 2006, Industrial processes (Chapter IV), in Global mitigation of non-$CO_2$ greenhouse gases, EPA-430-R-06-005, Washington DC, USA, 1-14.
30 Gutierrez, M. J. F., Baxter, D., Hunter, C., Svoboda, K., 2005, Nitrous oxide ($N_2O$) emissions from waste and biomass to energy plants, Waste Manage. Res., 23, 133-147.   DOI
31 Hamon, C., Janaasens, P., 2001, Catalytic decomposition of $N_2O$ in a glyoxal unit, Proceedings of NOXCONF 2001: International conference on atmospheric pollution $NO_x$ and $N_2O$ emission control: Panel of available techniques, Paris-La Defense, 21-22 March, France, Session 7: State-of-the-art across industrial sectors, 1-8.
32 Hevia, M. A. G., Perez-Ramirez, J., 2008, Assessment of the low-temperature $EnviNO_x^{\circledR}$ variant for catalytic $N_2O$ abatement over steam-activated FeZSM-5, Appl. Catal. B, 77, 248-254.   DOI
33 Blanco, J., Avila, P., Marzo, L., 1993, Low temperature multibed SCR process for tail gas treatment in nitric acid plant, Catal. Today, 17, 325-332.   DOI
34 IPCC, 2000, $N_2O$ emissions from adipic acid and nitric acid production (Chapter 3), in Good practice guidance and uncertainty management in national greenhouse gas inventories, IPCC's Task Force on National Greenhouse Gas Inventories (TFI), 3.1-3.131.
35 BASF, 2009, BASF report-2009, Communications and government realtions, BASF SE, Ludwigshafen, Germany, 1-224.
36 Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P., Clarket, A. D., 1996, Atmospheric gas concentrations over the past century measured in air from firn at the South Pole, Nature, 383, 231-235.   DOI