• 제목/요약/키워드: Antagonistic metabolites

Search Result 34, Processing Time 0.026 seconds

Antagonism of Bacterial Extracellular Metabolites to Freshwater-Fouling Invertebrate Zebra Mussels, Dreissena polymopha

  • Gu, Ji-Dong;Ralph Mitchell
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • We investigated the antagonism of indigenous bacteria isolated from stressed mussels and their extracellular metabolites on the adult zebra mussel, Dreissena polymorpha. Selective bacterial isolates including Aeromonas media, A. salmonicida, A. veronii, and Shewanella putrefaciens, showed strong lethality against adult mussels and 100% mortality was observed within 5 days of incubation. Bacterial metabolites, fractionated and concentrated from stationary-phase culture supernatants of these bacterial isolates, displayed varying degrees of antagonistic effects on zebra mussels. Among the three size fractions examined, <5, 5-10, and >10 kDa, the mast lethal fraction seems to be >10 kDa for three of the four isolates tested. Further chemical analyses of these size fractions revealed that the predominant constituents were polysaccharides and proteins. No 2-keto-3-deoxyoctanoic acid (2-KDO), deoxyribonucleic acids (DNA) or uranic acid were detectable. Extraction of supernatants of two antagonistic isolates with polar solvent suggested that polar molecules are present in the active fraction. Our data suggest that extracellular metabolites produced by antagonistic bacteria are also involved in disease development in zebra mussels and elucidation of the mechanisms involved may offer a novel strategy for control of biofouling invertebrates.

  • PDF

Assessment of the Contribution of Antagonistic Secondary Metabolites to the Antifungal and Biocontrol Activities of Pseudomonas fluorescens NBC275

  • Dutta, Swarnalee;Yu, Sang-Mi;Lee, Yong Hoon
    • The Plant Pathology Journal
    • /
    • v.36 no.5
    • /
    • pp.491-496
    • /
    • 2020
  • An understanding of the contribution of secondary metabolites (SMs) to the antagonistic and biocontrol activities of bacterial biocontrol agents serves to improve biocontrol potential of the strain. In this study, to evaluate the contribution of each SM produced by Pseudomonas fluorescens NBC275 (Pf275) to its antifungal and biocontrol activity, we combined in silico analysis of the genome with our previous study of transposon (Tn) mutants. Thirteen Tn mutants, which belonged to 6 biosynthetic gene clusters (BGCs) of a total 14 BGCs predicted by the antiSMASH tool were identified by the reduction of antifungal activity. The biocontrol performance of Pf275 was significantly dependent on 2,4-diacetylphloroglucinol and pyoverdine. The clusters that encode for arylpolyene and an unidentified small linear lipopeptide influenced antifungal and biocontrol activities. To our knowledge, our study identified the contribution of SMs, such as a small linear lipopeptide and arylpolyene, to biocontrol efficacy for the first time.

Diversity and Characterization of Endophytic Bacteria Associated with Tidal Flat Plants and their Antagonistic Effects on Oomycetous Plant Pathogens

  • Bibi, Fehmida;Yasir, Muhammad;Song, Geun-Cheol;Lee, Sang-Yeol;Chung, Young-Ryun
    • The Plant Pathology Journal
    • /
    • v.28 no.1
    • /
    • pp.20-31
    • /
    • 2012
  • Endophytic bacterial communities of tidal flat plants antagonistic to oomycete plant pathogens were studied by the isolation of 256 root colonizing endophytic bacteria from surface-disinfected root tissues of six plants ($Rosa$ $rugosa$, $Suaeda$ $maritima$, $Vitex$ $rotundifolia$, $Carex$ $scabrifolia$, $Glehnia$ $littoralis$ and $Elymus$ $mollis$) growing in a tidal flat area of Namhae Island, Korea. To understand the antagonistic potential, an $in$ $vitro$ antagonistic assay was performed to characterize and identify strains that were antagonistic to the oomycete plant pathogens $Phytophthora$ $capsici$ and $Pythium$ $ultimum$ from the total population. Nine percent of the total number of isolated bacteria exhibited in vitro inhibitory activity against target plant pathogenic oomycetes. Taxonomic and phylogenetic placement of the antagonistic bacteria was investigated by analysis of the 16S rRNA gene sequences. The sequence analysis classified the antagonistic strains into four major classes of the domain bacteria ($Firmicutes$, ${\alpha}-Proteobacteria$, ${\gamma}-Proteobacteria$ and $Actinomycetes$) and 10 different genera. Further production of secondary metabolites, hydrolytic enzymes and plant growth promoting traits were determined for the putative new species of antagonistic endophytic bacteria. These new strains could not be identified as known species of ${\alpha}-Proteobacteria$, and so may represent novel bacterial taxa. The unexpected high antagonistic bacterial diversity associated with the tidal flat plants may be indicative of their importance in tidal flat plants as a promising source of novel antimicrobial compounds and biocontrol agents.

Colony Count with Mixed Culture of Enteric Bacteria by in vitro Quantitative Method (장내세균의 시간차 혼합배양이 보여주는 균수측정의 비교)

  • 황선철;전보성
    • Korean Journal of Microbiology
    • /
    • v.11 no.4
    • /
    • pp.175-180
    • /
    • 1973
  • This study was attempted to see more clear relationships among the enterobacteria, especially between the intestinal normal flora and pathogenic bacteria. It has been known that some intestinal normal flora produce the bactrial metabolites that are harmful to other enteric bacteria. One of the metabolites is known as colicin, the protein fraction, which possesses certain degree of inhibitory effect against other bacterial growth fraction, whih possesses certain degree of inhibitory effect against other bacterial growth. As a preliminary study for a colicin purification, the antagonistic effect of E, coli to groups of Salmonella and Shigella has been studied by means of in vitro quantitative culture method. 1. E.coli showed definite inhibitory effects aganist both Salmonella and Shigella groups in the mixture of two organisms. 2. The inhibitory effects of E.coli in the E.coli-Salmonella and the E.coli-Shigella mixture occurred from 4 hours incubation following the inoculation. 3. Even the complete inhibition of pathogenic enteric bacterial growth was noticed in the E.coli-Salmonella mixture at overnight incubation. 4. Among the diluted mixtures, 1:100, 1:1,000, and 1:10,000, survival rate of pathogenic enteric bacteria in the mixtures with E.coli showed least affected at the 1:1,000 dilution. 5. It was found that the antagonistic effect aganist groups of Salmonella-shigella was depending upon the groups of the genera.

  • PDF

Bioprospecting Endophytic Fungi and Their Metabolites from Medicinal Tree Aegle marmelos in Western Ghats, India

  • Mani, Vellingiri Manon;Soundari, Arockiamjeyasundar Parimala Gnana;Karthiyaini, Damodharan;Preethi, Kathirvel
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • The increasing emergence of lead drugs for the resistance produced by the pathogenic strains and arrival of new diseases have initiated the need for searching novel metabolites with best anticancer and antimicrobial properties than the existing one. With this view, the investigation was conducted for the isolation, identification, and biological evaluation of potential endophytic fungi of Aegle marmelos, a medicinal tree used for more than three decades, for curing various disorders. A total of 169 endophytic fungal strains obtained from sampling and among those 67 were pigmented strains. Upon antagonistic screening, five endophytic fungal strains exhibited antagonistic potentiality by inhibiting the pathogens. These five potent strains were characterized at molecular level by sequencing the amplified internal transcribed spacer (ITS) 1 and ITS 4 regions of rDNA and they were grouped under order Pleosporales, Eurotiales, and Capnodiales. The metabolites from the respective strains were produced in fungal culturing media and extracted using polar solvents. Further, the extracts of five endophytes manifested antimicrobial activity against tested clinical pathogens and Alternaria alternata (FC39BY), Al. citrimacularis (FC8ABr), and Curvularia australiensis (FC2AP) exhibited significant antimicrobial profile against 9 of 12 tested pathogens, showing broad spectrum activity. The antioxidant levels of all the five endophytes revealed the highest activity at least concentrations, and major activity was unveiled by the members of order Pleosporales FC2AP and FC8ABr. This research explains the value of endophytic fungal extracts and its significance of antimicrobial and antioxidant properties.

Screening of Trichoderma Isolates as a Biological Control Agent against Ceratocystis paradoxa Causing Pineapple Disease of Sugarcane

  • Rahman, M.A.;Begum, M.F.;Alam, M.F.
    • Mycobiology
    • /
    • v.37 no.4
    • /
    • pp.277-285
    • /
    • 2009
  • In this study, dual culture, poison agar, and direct methods were used to assess the ability of Trichoderma virens IMI-392430, T. pseudokoningii IMI-392431, T. harzianum IMI-392432, T. harzianum IMI-392433, and T. harzianum IMI-392434 to control Ceratocystis paradoxa, which causes the pineapple disease of sugarcane. The highest percentage inhibition of radial growth (PIRG) values were observed with T. harzianum IMI-392432 using two dual culture methods, 63.80% in Method I and 80.82% in Method II. The minimum colony overgrowth time was observed with T. harzianum IMI-392432 and the maximum was observed with T. pseudokoningii IMI-392431. Different concentrations of different day-old metabolites of Trichoderma isolates were tested against mycelial growth of C. paradoxa. The highest PIRG (84.685%) exhibited at 80% concentration of 30-day-old metabolites of T. harzianum IMI-392432 using the modified bilayer poison agar method. In the direct assay method the maximum mycelial growth weight (PIGW) was observed at the same concentration and the same day-old metabolites of T. harzianum IMI-392432. This study showed that Trichoderma isolates have a good antagonistic effect on C. paradoxa mycelial growth and T. harzianum IMI-392432 has the most potential to control the pineapple disease pathogen.

Diversity and Bioactive Potential of Culturable Fungal Endophytes of Medicinal Shrub Berberis aristata DC.: A First Report

  • Sharma, Supriya;Gupta, Suruchi;Dhar, Manoj K.;Kaul, Sanjana
    • Mycobiology
    • /
    • v.46 no.4
    • /
    • pp.370-381
    • /
    • 2018
  • Bioactive natural compounds, isolated from fungal endophytes, play a promising role in the search for novel drugs. They are an inspiring source for researchers due to their enormous structural diversity and complexity. During the present study fungal endophytes were isolated from a well-known medicinal shrub, Berberis aristata DC. and were explored for their antagonistic and antioxidant potential. B. aristata, an important medicinal shrub with remarkable pharmacological properties, is native to Northern Himalayan region. A total of 131 endophytic fungal isolates belonging to eighteen species and nine genera were obtained from three hundred and thirty surface sterilized segments of different tissues of B. aristata. The isolated fungi were classified on the basis of morphological and molecular analysis. Diversity and species richness was found to be higher in leaf tissues as compared to root and stem. Antibacterial activity demonstrated that the crude ethyl acetate extract of 80% isolates exhibited significant results against one or more bacterial pathogens. Ethyl acetate extract of Alternaria macrospora was found to have potential antibacterial activity. Significant antioxidant activity was also found in crude ethyl acetate extracts of Alternaria alternata and Aspergillus flavus. Similarly, antagonistic activity of the fungal endophytes revealed that all antagonists possessed inhibition potential against more than one fungal pathogen. This study is an important step towards tapping endophytic fungal diversity for bioactive metabolites which could be a step forward towards development of novel therapeutic agents.

Antifungal Activity of an Endophytic Fungus Aspergillus versicolor DYSJ3 from Aphanamixis grandifolia Blume against Colletotrichum musae

  • Li, Xiaoyu;Wu, Yateng;Liu, Zhiqiang
    • Mycobiology
    • /
    • v.49 no.5
    • /
    • pp.498-506
    • /
    • 2021
  • An endophytic fungus strain DYSJ3 was isolated from a stem of Aphanamixis grandifolia Blume, which was identified as Aspergillus versicolor based on the morphological characteristics, internal transcribed spacer (ITS) and calmodulin gene sequences analyses. A. versicolor DYSJ3 exhibited strong antagonistic activity against Colletotrichum musae, C. gloeosporioides and Fusarium oxysporum f. sp. cubense with the inhibition rates of 61.9, 51.2 and 55.3% respectively. The antifungal metabolites mainly existed in the mycelium of A. versicolor DYSJ3, and its mycelial crude extract (CE) had broad-spectrum antifungal activities against plant pathogenic fungi. The CE had a good thermal stability, and the inhibition rate of 100 mg/mL CE against C. musae was above 70.0% after disposing at 120 ℃ for 1 h. Five secondary metabolites were isolated from the CE and identified as averufanin, ergosterol peroxide, versicolorin B, averythrin and sterigmatocystin. Activity evaluation showed versicolorin B exhibited inhibitory effects on the mycelial growth and conidial germination of C. musae, and sterigmatocystin had a weak inhibitory effect on the mycelial growth of C. musae.

Subspecies Classifying and Characterizing the Two Groups of Antagonistic Sorangium cellulosum against Botrytis cinerea and Colletotrichum acutatum (Botrytis cinerea와 Colletotrichum acutatum에 항균활성을 갖는 점액세균 Sorangium cellulosum에 대한 아종 분류 및 길항 특성 연구)

  • Koo, Tae-Hoon;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.213-220
    • /
    • 2018
  • We classified the previously reported antagonistic strains of Sorangium cellulosum into 5 subspecies (A-E). Four strains were antagonistic to Botrytis cinerea (AB group) and two strains were antagonistic to Colletotrichum acutatum (AC group). According to the genetic and sequential analyses with standard genes, xynB1, bglA2, groEL1 for grouping, all strains of AB group were belonged to subspecies C and all strains of AC group were belonged to subspecies D. In addition, high pressure liquid chromatography with the culture filtrates confirmed the genetic results, because AB group had peaks with retention time at 20-22.5 minutes, whereas AC group had no peak. There was positive relationship ($R^2=0.9652$) between the control values of infecting B. cinerea on cherry tomatoes and the main peak areas of chromatograms among the four isolates of AB group. From the subspecies results of AB group, the main peak of KYC 3270 was expected to be epothilone D. However the retention times of the standard of commercial epothilone D and the main peak of KYC 3270 culture filtrate were different as 9.9 and 11.581 min., respectively. Finally, the antagonistic metabolite of AB group was inferred as 7-ketone epothilone D.

Plant-derived Antibacterial Metabolites Suppressing Tomato Bacterial Wilt Caused by Ralstonia solanacearum

  • Vu, Thuy Thu;Choi, Gyung Ja;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.89-98
    • /
    • 2017
  • Ralstonia solanacearum species complex (RSSC) causes bacterial wilt, and it is one of the most important soil-borne plant pathogenic bacteria. RSSC has a large host range of more than 50 botanical families, which represent more than 200 plant species, including tomato. It is difficult to control bacterial wilt due to following reasons: the bacterial wilt pathogen can grow inside the plant tissue, and it can also survive in soil for a long period; moreover, it has a wide host range and biological diversity. In most previous studies, scientists have focused on developing biological control agents, such as antagonistic microorganisms and botanical materials. However, biocontrol attempts are not successful. Plant-derived metabolites and extracts have been promising candidates to environmentally friendly control bacterial wilt diseases. Therefore, we review the plant extracts, essential oils, and secondary metabolites that show potent in vivo antibacterial activities (in potted plants or in field) against tomato bacterial wilt, which is caused by RSSC.