DOI QR코드

DOI QR Code

Subspecies Classifying and Characterizing the Two Groups of Antagonistic Sorangium cellulosum against Botrytis cinerea and Colletotrichum acutatum

Botrytis cinerea와 Colletotrichum acutatum에 항균활성을 갖는 점액세균 Sorangium cellulosum에 대한 아종 분류 및 길항 특성 연구

  • Koo, Tae-Hoon (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University) ;
  • Yun, Sung-Chul (Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University)
  • 구태훈 (선문대학교 제약생명공학과) ;
  • 윤성철 (선문대학교 제약생명공학과)
  • Received : 2018.04.30
  • Accepted : 2018.05.09
  • Published : 2018.09.30

Abstract

We classified the previously reported antagonistic strains of Sorangium cellulosum into 5 subspecies (A-E). Four strains were antagonistic to Botrytis cinerea (AB group) and two strains were antagonistic to Colletotrichum acutatum (AC group). According to the genetic and sequential analyses with standard genes, xynB1, bglA2, groEL1 for grouping, all strains of AB group were belonged to subspecies C and all strains of AC group were belonged to subspecies D. In addition, high pressure liquid chromatography with the culture filtrates confirmed the genetic results, because AB group had peaks with retention time at 20-22.5 minutes, whereas AC group had no peak. There was positive relationship ($R^2=0.9652$) between the control values of infecting B. cinerea on cherry tomatoes and the main peak areas of chromatograms among the four isolates of AB group. From the subspecies results of AB group, the main peak of KYC 3270 was expected to be epothilone D. However the retention times of the standard of commercial epothilone D and the main peak of KYC 3270 culture filtrate were different as 9.9 and 11.581 min., respectively. Finally, the antagonistic metabolite of AB group was inferred as 7-ketone epothilone D.

섬유소 분해 점액세균인 Sorangium cellulosum 균주들 중 Botrytis cinerea에 길항력을 갖는다고 보고한 4균주(Antagonistic to Botrytis, AB 계열)와 Colletotrichum acutatum에 길항력을 갖는다고 보고한 2균주(Antagonistic to Colletotrichum, AC 계열)를 5가지(A-E)의 S. cellulosum 아종(subspecies)으로 분류하였다. 분류 기준 유전자인 xynB1, bglA2, groEL1 세 유전자의 유전자 유무 및 염기서열 분석을 통해 AB 계열은 아종 C, AC 계열은 아종 D로 분류하였다. 또한, 배양추출물을 고효율 액체크로마토그래피(HPLC)로 분석한 아종 분류 결과 AB 계열 4균주는 머무름시간 20-22.5분에 유사한 특징 피크가 나타난 반면, AC 계열인 2균주는 특징 피크가 없으므로 AB 계열은 아종 C, AC 계열은 아종 D임을 재확인하였다. AB 계열 4균주들의 배양여액을 사용하여 방울토마토에 전처리 후 B. cinerea를 접종한 생물검정으로 방제가와 크로마토그램 특징 피크의 상대 면적값과의 상관분석 결과, 피크 면적이 큰 균주일수록 방제가도 높은 양의 상관관계($R^2=0.9652$)를 확인하였다. 아종 분류 결과 AB 계열은 아종 C의 대표 생리활성 물질의 파생물인 epothilone D로 추정되어, 이를 표준시료로 HPLC 분석한 결과 epothilone D의 머무름시간은 9.9분이었던 반면, KYC 3270 특성 피크의 머무름시간은 11.581분으로 달랐다. 따라서 우리는 AB 계열이 분비하는 생리활성 물질은 epothilone의 파생물인 7-ketone epothilone D로 추정하였다.

Keywords

References

  1. Coughlan, M. P. and Hazlewood, G. P. 1993. Beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17: 259-289.
  2. Frank, B., Knauber, J., Steinmetz, H., Scharfe, M., Blocker, H., Beyer, S. et al. 2007. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. Chem. Biol. 14: 221-233. https://doi.org/10.1016/j.chembiol.2006.11.013
  3. Jiang, D. M., Zhao, L., Zhang, C. Y., Li, J., Xia, Z. J., Wang, J. et al. 2008. Taxonomic analysis of Sorangium strains based on HSP60 and 16SrRNA gene sequences and morphology. Int. J. Syst. Evol. Microbiol. 58: 2654-2659. https://doi.org/10.1099/ijs.0.65806-0
  4. Kern, F., Dier, T. K. F., Khatri, Y., Ewen, K. M., Jacquot, J. P., Volmer, D. A. et al. 2015. Highly efficient CYP167A1(EpoK) dependent epothilone B formation and production of 7-ketone-epothilone D as a new epothilone derivative. Sci. Rep. 5: 14881. https://doi.org/10.1038/srep14881
  5. Kim, S. T. and Yun, S. C. 2011. Selection of KYC 3270, a cellulolytic myxobacteria of Sorangium cellulosum, against several phytopathogens and a potential biocontrol agent against gray mold in stored fruit. Plant Pathol. J. 27: 257-265. https://doi.org/10.5423/PPJ.2011.27.3.257
  6. Lee, C. Y., An, D. J., Lee, H. B. and Cho, K. Y. 2013. Correlation between Sorangium cellulosum subgroups and their potential for secondary metabolite production. J. Microbiol. Biotechnol. 23: 297-303. https://doi.org/10.4014/jmb.1210.10054
  7. Niggemann, J., Bedorf, N., Florke, U., Steinmetz, H., Gerth, K., Reichenbach, H. et al. 2005. Spirangien A and B, highly cytotoxic and antifungal spiroketals from the myxobacterium Sorangium cellulosum : isolation, structure elucidation and chemical modifications. Eur. J. Org. Chem. 2005: 5013-5018. https://doi.org/10.1002/ejoc.200500425
  8. Ojha, A., Anand, M., Bhatt, A., Kremer, L., Jacobs, W. R. Jr. and Hatfull, G. F. 2005. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861-873. https://doi.org/10.1016/j.cell.2005.09.012
  9. Ringel, S. M., Greenough, R. C., Roemer, S., Connor, D., Gutt, A. L., Blair, B. et al. 1997. Ambruticin(W7783), a New antifungal antibiotic. J. Antibiot. 30: 371-375.
  10. Rogalska, A., Marczak, A., Gajek, A., Szwed, M., Sliwinska, A., Drzewoski, J. et al. 2013. Induction of apoptosis in human ovarian cancer cells by new anticancer compounds, epothilone A and B. Toxicol. In Vitro 27: 239-249. https://doi.org/10.1016/j.tiv.2012.09.006
  11. Wang, J., Zhang, H., Ying, L., Wang, C., Jiang, N., Zhou, Y. et al. 2009. Five new epothilone metabolites from Sorangium cellulosum strain So0157-2. J. Antibiot. 62: 483-487. https://doi.org/10.1038/ja.2009.55
  12. Yun, S. C. 2014. Selection and a 3-year field trial of Sorangium cellulosum KYC 3262 against anthracnose in hot pepper. Plant Pathol. J. 30: 279-287. https://doi.org/10.5423/PPJ.OA.01.2014.0002