• Title/Summary/Keyword: Annual Maximum Precipitation

Search Result 126, Processing Time 0.029 seconds

Regional Climate Simulations over East-Asia by using SNURCM and WRF Forced by HadGEM2-AO (HadGEM2-AO를 강제자료로 사용한 SNURCM과 WRF의 동아시아 지역기후 모의)

  • Choi, Suk-Jin;Lee, Dong-Kyou;Oh, Seok-Geun
    • Journal of the Korean earth science society
    • /
    • v.32 no.7
    • /
    • pp.750-760
    • /
    • 2011
  • In this study, the reproducibility of the simulated current climate by using two regional climate models, such as Seoul National University Regional Climate Model (SNURCM) and Weather Resuearch and Forecasting (WRF), is evaluated in advance to produce the standard regional climate scenario of future climate. Within the evaluation framework of a COordinated Regional climate Downscaling EXperiment (CORDEX), 28-year-long (1978-2005) regional climate simulation was conducted by using the Hadley Centre Global Environmental Model (HadGEM2-AO) global simulation data of the National Institute of Meteorological Research (NIMR) as a lateral boundary forcing. The simulated annual surface temperatures were in good agreement with the observation; the spatial correlation coefficients between each model and observation were over 0.98. The cold bias, however, were shown over the northern boundary in the both simulated results. In evaluation of the simulated precipitation, the skill was reasonable and good. The spatial correlation coefficients for the precipitation over the land area were 0.85 and 0.79 in SNURCM and WRF, respectively. It is noted that two regional climate models (RCMs) have different characteristics for the distribution of precipitation over equatorial and midlatitude areas. SNURCM shows better distribution of the simulated precipitation associated with the East Asia summer monsoon in the mid-latitude areas, but WRF shows better in the equatorial areas in comparison to each other. The simulated precipitation is overestimated in summer season (JJA) rather than in spring season (MAM), whereas the spatial distribution of the precipitation in spring season corresponds to the observation better than in summer season. Also the RCMs were capable of reproducing the annual variability of the maximum amount and its timing in July, in which the skills over the inland area were in better agreement with the observation than over the maritime area. The simulated regional climates, however, have the limitation to represent the number of days for extremely hot temperature and heavy rainfall over South Korea.

Numerical Model study of Surface Temperature and Hydrological Budget Change for the Last Glacial Maximum (마지막 최대 빙하기의 온도 및 물수지 변화 수치모델연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Yoon, Ho-Il
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.2
    • /
    • pp.135-145
    • /
    • 2006
  • The surface temperature and hydrological budget for the last glacial maximum (LGM) is simulatedwith an atmospheric general circulation model of NCAR CCM3 at spectral truncation of T170, corespondingto a grid cel size of roughly 75 km. LGM simulations were forced with the reconstructed CLIMAP sea surface temperatures, sea ice distribution, ice sheet topography, reduced CO2, and orbital parameters.oC in winter, 5.6oC in sumer,and 6oC annual-mean. The decrease of surface temperature leads to a weakening of the hydrologicalcycle. Global-mean precipitation decreases by about 14% in winter, 17% in summer, and 13% annually.However, some regions such as the U.S., southern Europe, northern and eastern Africa, and the SouthAmerica appear to be weter in the LGM winter and Canada and the Midle East are weter in sumer. model captures detailed climate features over land.

  • PDF

Effect Analysis of Precipitation Events According to an Urbanization (도시화가 강수사상에 미치는 영향 분석)

  • Oh, Tae Suk;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4B
    • /
    • pp.413-427
    • /
    • 2010
  • Urbanization means the sudden increment of a population and the industrialization. The hydrologic water cycle causes many changes due to urbanization. Therefore, the affects that urbanization influences on the precipitation events were analyzed. But the precipitation events are very much influenced many meteorological and climatologically indices besides the effect of an urbanization. So, an analysis was performed by using precipitation data observed in many spots of the Korean peninsula. The analysis data are annual precipitation, the duration 1 daily maximum amount of precipitation, the rainy days, and 10 mm over the rainy days, and 80 mm. seasonal precipitation and seasonal rainy days. The analytical method classified 4 clusters in which the precipitation characteristic is similar through the cluster analysis. It compared and analyzed precipitation events of the urban and rural stations. Moreover, the representative rainfall stations were selected and the urban stations and rural stations were compared. In the analyzed result, the increment of the rainy days was conspicuous over 80mm in which it can cause the heavy rainfall. By using time precipitation data, the design precipitation was calculated. Rainfall events over probability precipitation on duration and return period were analyzed. The times in which it exceeds the probability precipitation in which the urban area is used for the hydrologic structure design in comparison with the rural area more was very much exposed to increase.

Evaluation of Probability Precipitation using Climatic Indices in Korea (기상인자를 이용한 우리나라의 확률강수량 평가)

  • Oh, Tae-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.681-690
    • /
    • 2009
  • In this research, design precipitation was calculated by reflecting the climatic indices and its uncertainty assessment was evaluated. Climatic indices used the sea surface temperature and moisture index which observed globally. The correlation coefficients were calculated between the annual maximum precipitation and the climatic indices. and then climatic indices which have the larger correlation coefficient were selected. Therefore, the regression relationship was established by a locally weighted polynomial regression. Next, climatic indices were generated by montecarlo simulation using kernel function. Finally, the design rainfall was calculated by the locally weighted polynomial regression using generated climatic indices. At the result, the comparison of design rainfall between the reflection of the climatic indices and the frequency analysis did not indicate a significant difference. Also, this result can be used as basic data for calculation of probability precipitation to reflect climate change.

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Analysis of climate change impact on flow duration characteristics in the Mekong River (기후변화에 따른 메콩강 유역의 미래 유황변화 분석)

  • Lee, Daeeop;Lee, Giha;Song, Bonggeun;Lee, Seungsoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • The purpose of this study is to analyze the Mekong River streamflow alteration due to climate change. The future climate change scenarios were produced by bias corrections of the data from East Asia RCP 4.5 and 8.5 scenarios, given by HadGEM3-RA. Then, SWAT model was used for discharge simulation of the Kratie, the main point of the Mekong River (watershed area: $646,000km^2$, 88% of the annual average flow rate of the Mekong River). As a result of the climate change analysis, the annual precipitation of the Kratie upper-watershed increase in both scenarios compared to the baseline yearly average precipitation. The monthly precipitation increase is relatively large from June to November. In particular, precipitation fluctuated greatly in the RCP 8.5 rather than RCP 4.5. Monthly average maximum and minimum temperature are predicted to be increased in both scenarios. As well as precipitation, the temperature increase in RCP 8.5 scenarios was found to be more significant than RCP 4.5. In addition, as a result of the duration curve comparison, the streamflow variation will become larger in low and high flow rate and the drought will be further intensified in the future.

Analysis of Meteorological Elements in the Cultivated Area of Hadong Green Tea (하동녹차 재배지역의 기상요소별 분석)

  • Hwang, Jung-Gyu;Kim, Jong-Cheol;Cho, Kyoung-Hwan;Han, Jae-Yoon;Kim, Ru-Mi;Kim, Yeon-Su;Cheong, Gang-Won;Kim, Yong-Duck
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.132-142
    • /
    • 2010
  • Characteristics of meteorological elements were analyzed at Hwagae and Agyang where are the representative areas of Hadong green tea cultivation in Korea. An automatic weather monitoring system (AWS) and a simple data log were employed to measure meteorological data such as temperature, relative humidity, precipitation, and wind direction and speed for 2009. The annual average air temperature of Hwagae and Agyang was 14.5 and 14.2, respectively, showing the warmest month in August ($25.4^{\circ}C$ for Hwagae and $24.9^{\circ}C$ for Agyang) and the coldest month in January ($0.3^{\circ}C$ for Hwagae and $0.2^{\circ}C$ for Agyang). Annual average of daily temperature difference (= daily maximum temperature - daily minimum temperature) was $11.3^{\circ}C$ for Hwagae and $11.1^{\circ}C$ for Agyang. Hwagae and Agyang had 62.7% and 65.3% of the annual average relative humidity, respectively. Annual precipitation was 1387 mm for Hwagae and 1793 mm for Agyang of which were higher of 605mm for Hwagae and 835 mm for Agyang compared to that in 2008. Majority of precipitation occurred between May and August, attributing 77.6% for Hwagae and 76.6% for Agyang to the annual precipitation. The annual total sunshine duration was 2054.3 hrs in Hwagae with the longest monthly sunshine duration in May (235.1 hrs) and the shortest monthly sunshine duration in July (102.5 hrs). Dominant wind direction changed seasonally from northwesterly wind in fall and winter to southeasterly wind in spring and summer. The annual average wind speed was 1.5 m $s^{-1}$ with the highest monthly wind speed of 2.0 m $s^{-1}$ in December and the lowest monthly wind speed of 1.1 m $s^{-1}$ in February. It is expected that continuous observation and assessment of meteorological data will improve our understanding of optimal environmental conditions for green tea cultivation and be used for developing models of green tea cultivation in the Hadong area.

Analysis of the effect of climate change on IDF curves using scale-invariance technique: focus on RCP 8.5 (Scale-Invariance 기법을 이용한 IDF 곡선의 기후변화 영향 분석: RCP 8.5를 중심으로)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Sangdan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.12
    • /
    • pp.995-1006
    • /
    • 2016
  • According to 5th IPCC Climate Change Report, there is a very high likelihood that the frequency and intensity of extreme rainfall events will increase. In reality, flood damage has increased, and it is necessary to estimate the future probabilistic design rainfall amount that climate change is reflected. In this study, the future probabilistic design precipitation amount is estimated by analyzing trends of future annual maximum daily rainfall derived by RCP 8.5 scenarios and using the scale-invariance technique. In the first step, after reviewing the time-scale characteristics of annual maximum rainfall amounts for each duration observed from 60 sites operating in Korea Meterological Administration, the feasibility of the scale-invariance technique are examined using annual daily maximum rainfall time series simulated under the present climate condition. Then future probabilistic design rainfall amounts for several durations reflecting the effects of climate change are estimated by applying future annual maximum daily rainfall time series in the IDF curve equation derived by scale-invariance properties. It is shown that the increasing trend on the probabilistic design rainfall amount has resulted on most sites, but the decreasing trend in some regions has been projected.

Studies on the Some Hydrological Quantities of Principal Locations in the Basin of Geum River(I) (금강유역(錦江流域) 주요지점(主要地点)의 제(諸) 수문량(水文量)에 관(關)한 연구(硏究)(I))

  • Ahn, Byoung Gi;Cho, Seung Seup
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.281-300
    • /
    • 1975
  • The precipitation data and water level data in twenty-four sampling places, to investigate same hydrological quantities along the basin of Geum River, have been analyzed, and the findings for the first report are summarized as follows. 1. The mean annual precipitation in the basin of Geum River is of 1203mm, and the areal weight of areal rainfall by Thiessen's method shows as Table 1. 2. The areas where have maximum annual precipitation of 1501 to 2000mm, are seventeen placed among twentyfour gauging stations, and it is founded to be the highest rate with 71 percents. The precipitation of below 1500mm is measured in the other three statinons, and that of above 2001mm in four stations, too. 3. The areas where have maximum rainfall of 201 to 300mm within a day, are fifteen places, and that comes in the highest rate of distribution with 63 percents. 4. As to distribution of the places with maximum rainfall of below and above 300mm within two days, it shows respectively 50 percents. 5. The areas where have maximum rainfall of 301 to 400mm within three days, are fifteen places, and it is the highest rate of distribution with 63 percents. 6. The fourteen places have maximum rainfall of 401 to 600mm within a continuous day, it is the highest rate of distribution with 58 percents. 7. Table 5 shows probable maximum rainfall within a day, and it does the most rainfall a long the upper stream of Daecheong dam site around Muju, and the next shows in the areas around Ganggyeung, Gongju and Buyeu. 8. During irrigation period on paddy corp, for 100 days from early ten days in June to early ten days in September the areas where have rainfall of 601 to 800mm are sixteen places, and it is the highest rate of distribution with 76 percents, as Table 6 9. The areas where have effective rainfall of 501 to 600mm, are fifteen places, and it is the highest rate of distribution with 71 percents. Thirteen places have the effective ratio of 66 to 75 percents, and it means 62 percents of distribution, and the next, 76 to 85 percents in the seven places, and it comes 33 percents. 10. The areas where have probable effective rainfall of 401 to 500mm, are fourteen places, which is about 100mm less than mean effective rainfall in each area, and that comes 67 percents of distribution. 11. A particular year can not be appointed as once -in-10 year drought in the same year as a whole in the basin of Geum River. 12. The basin of Geum River, s/S being 0.53 to 0.74, has relatively proper conditions in the aspect of water resources.

  • PDF

Climatological Variability of Temperature and Precipitation in Jeju (제주지역 기온과 강수량의 기후 변동 특성)

  • Kim, Seong-Su;Jang, Seung-Min;Baek, Hee-Jeong;Choi, Heung-Yeon;Kwon, Won-Tae
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.188-197
    • /
    • 2006
  • The characteristics of variability of temperature and precipitation in Jeju were investigated using data observed in Jeju station for from 1924 to 2004. Annual mean temperature change for the last 81 years is $0.02^{\circ}C$ increase per year. After 1980, the increase is $0.05^{\circ}C$ per year, larger than the former. The increase of the minimum temperature is larger than that of the maximum temperature in Jeju and has resulted in the increase of mean temperature. The frequency of climate extreme occurrence of temperature and rainfall was also investigated. The temporal variation of frequency of the extremely higher temperature has increased in the 1980's with global warming. The appearance of the extremely lower minimum temperature has decreased during the summers and winters. The facts that the frequencies of rainy days has decreased and heavy rainfall days of more than 80 mm per day in precipitation has increased indicate the increase of rainfall intensity.