DOI QR코드

DOI QR Code

Regional Climate Simulations over East-Asia by using SNURCM and WRF Forced by HadGEM2-AO

HadGEM2-AO를 강제자료로 사용한 SNURCM과 WRF의 동아시아 지역기후 모의

  • Choi, Suk-Jin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Dong-Kyou (School of Earth and Environmental Sciences, Seoul National University) ;
  • Oh, Seok-Geun (Department of Atmospheric Science, Kongju National University)
  • Received : 2011.12.07
  • Accepted : 2011.12.20
  • Published : 2011.12.31

Abstract

In this study, the reproducibility of the simulated current climate by using two regional climate models, such as Seoul National University Regional Climate Model (SNURCM) and Weather Resuearch and Forecasting (WRF), is evaluated in advance to produce the standard regional climate scenario of future climate. Within the evaluation framework of a COordinated Regional climate Downscaling EXperiment (CORDEX), 28-year-long (1978-2005) regional climate simulation was conducted by using the Hadley Centre Global Environmental Model (HadGEM2-AO) global simulation data of the National Institute of Meteorological Research (NIMR) as a lateral boundary forcing. The simulated annual surface temperatures were in good agreement with the observation; the spatial correlation coefficients between each model and observation were over 0.98. The cold bias, however, were shown over the northern boundary in the both simulated results. In evaluation of the simulated precipitation, the skill was reasonable and good. The spatial correlation coefficients for the precipitation over the land area were 0.85 and 0.79 in SNURCM and WRF, respectively. It is noted that two regional climate models (RCMs) have different characteristics for the distribution of precipitation over equatorial and midlatitude areas. SNURCM shows better distribution of the simulated precipitation associated with the East Asia summer monsoon in the mid-latitude areas, but WRF shows better in the equatorial areas in comparison to each other. The simulated precipitation is overestimated in summer season (JJA) rather than in spring season (MAM), whereas the spatial distribution of the precipitation in spring season corresponds to the observation better than in summer season. Also the RCMs were capable of reproducing the annual variability of the maximum amount and its timing in July, in which the skills over the inland area were in better agreement with the observation than over the maritime area. The simulated regional climates, however, have the limitation to represent the number of days for extremely hot temperature and heavy rainfall over South Korea.

본 연구에서는 신뢰성 있는 국가표준 지역기후변화 시나리오 생산을 위해 현재기후에 대한 SNURCM과 WRF의 재현성을 검증하였다. 국립기상연구소에서 생산된 HadGEM2-AO 전구자료를 지역기후모형의 경계조건으로 사용하여 CORDEX 규준 하에 28년(1978-2005)간의 장기적분을 수행하였다. 두 모형은 연평균 지표 온도 분포를 관측과의 공간상관계수가 0.98 이상으로 매우 높은 일치성을 나타내었지만, 모형 영역의 북쪽 경계를 중심으로 한랭 편차를 공통적으로 보였다. 강수의 경우 또한 육지 지역을 대상으로 한 관측과의 공간 상관 계수는 SNURCM이 0.85, WRF가 0.79로 나타나 우수한 모의 결과를 보였다. 두 모형에서 모의된 강수 분포는 적도와 중위도 지역 간에 상반되는 특성을 보였다. SNURCM은 WRF에 비교하여 중위도 동아시아 몬순 강수대의 분포를 적도 지역의 강수대보다 상대적으로 잘 모의하였으나, WRF는 그 반대의 결과를 나타내었다. 여름철(JJA) 보다 봄철(MAM)에 과다 모의되었지만 모의된 강수 분포의 일치성은 봄철에 높게 나타났다. 세부영역 별 분석에서 두 모형은 7월 강수 최대 시점과 양을 비교적 정확히 모의하였고, 특히 내륙 지역 강수량의 모의 정확도가 해양에 영향 받는 지역보다 높았다. 모의결과는 한반도 상의 높은 일평균 지표온도일수와 강한 강수일수를 표현하는데 한계를 보였다.

Keywords

References

  1. 김찬수, 서명석, 2009, 베이지안 방법을 이용한 우리나라 강우특성(1954-2007)의 변화시점 및 변화유형 분석. 대기, 19, 199-211.
  2. 명지수, 서명석, 2010, 남한 지역에서 발생한 구름-지면 낙뢰의 극성별 특성. 한국지구과학회지, 31, 314-326.
  3. 오석근, 서명석, 명지수, 차동현, 2011, CORDEX 동아시아 영역에서 경계조건 및 적운모수화방안이 RegCM4를 이용한 남한 지역 기후모의에 미치는 영향 분석. 한국지구과학회, 32, 373-387.
  4. 윤희정, 김희종, 윤일희, 2006, 남한의 강수 계절성에 관한 연구. 한국지구과학회지, 27, 149-158.
  5. 이영호, 차동현, 이동규, 2008, 지역 기후 모형을 이용한 한반도 강수 모의에서 수평 해상도의 영향. 대기, 18, 387-395.
  6. 이효신, 간순영, 변영화, 강현석, 현유경, 백희정, 권원태, 2009, IPCC AR5 시나리오 산출을 위한 HadGEM2-AO 성능평가. 한국기상학회 가을 학술대회 논문집, 272-273.
  7. Cha, D.H. and Lee, D.K., 2009, Reduction of systematic errors in regional climate simulations of the summer monsoon over East Asia and the western North Pacific by applying the spectral nudging technique. Journal of Geophysical Research, 114, D14108, doi:10.1029/2008JD011176.
  8. Choi, S.-J., Cha, D.-H., and Lee, D.-K., 2008, Simulation of the 18-day summer heavy rainfall over East Asia using a regional climate model. Journal of Geophysical Research, 113, D12101, doi:10.1029/2007JD009213.
  9. Choi, S.-J., 2010, Effects of the spectral nudging on seasonal tropical cyclone simulation over the western North Pacific. Ph.D. thesis, Seoul National University, Seoul, Korea, 144 p.
  10. Easterling, D.R., Meehl, G.A., Parmesan, C., Changnon, S.A., Karl, T.R., and Mearns, L.O., 2000, Climate extremes: Observations, modeling, and impacts. Science, 289, DOI 10.1126/science.289.5487.206.
  11. Giorgi, F., 1990, Simulation of regional climate using a limited area model nested in a general circulation model. Journal of Climate, 3, 941-963. https://doi.org/10.1175/1520-0442(1990)003<0941:SORCUA>2.0.CO;2
  12. Giorgi, F. and Mearns, L.O., 1999a, Introduction to special section: Regional climate modeling revisited. Journal of Geophysical Research, 104, 6335-6352. https://doi.org/10.1029/98JD02072
  13. Giorgi, F. and Mearns, L.O., 1999b, Tests of precipitation parameterization available in the latest version of the NCAR regional climate model (RegCM) over the continental U.S. Journal of Geophysical Research, 104, 6353-6376. https://doi.org/10.1029/98JD01164
  14. Hong, S.Y., Moon, N.K., Lim, K.S.S., and Kim, J.W., 2010, Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study. Asia-Pacific Journal of Atmospheric Sciences, 26, 425-435.
  15. Im, E.S., Kim, M.H., Kwon, W.T., and Bae, D.H., 2007, Sensitivity of recent and future regional climate simulations to two convection schemes in the RegCM3 nesting system. Journal of Korean meteorological society, 43, 411-427.
  16. IPCC, 2007, Climate Change 2007. Synthesis report, Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, 104 p.
  17. Iwashima, T. and Yamamoto, R., 1993, A statistical analysis of the extreme events. Long-term trend of heavy daily precipitation. Journal of the Meteorological Society of Japan, 71, 37-640.
  18. Jung, H.S., Choi, Y., Oh, J.H., and Lim, G.H., 2002, Recent trends in temperature and precipitation over South Korea. International Journal of Climatology, 22, 1327-1337. https://doi.org/10.1002/joc.797
  19. Kang H.S., Cha, D.H., and Lee, D.K., 2005, Evaluation of the mesoscale model/land surface model (MM5/LSM) coupled model for East Asian summer monsoon simulations. Journal of Geophysical Research, 110, D10105, doi:10.1029/2004JD005266.
  20. Krichak, S.O., 2008, Regional climate model simulation of present-day regional climate over the european part of Russia with RegCM3. Russian Meteorology and Hydrology, 22, 20-26.
  21. Kwon, W.T., 2005, Current status and perspectives of climate change sciences (in Korean with English abstract). Journal of the Korean Meteorological Society, 41, 325-336.
  22. Lee, D.K. and Suh, M.S., 2000, Ten-year east Asian summer monsoon simulation using a regional climate model (RegCM2). Journal of Geophysical Research, 105, 29565-29577. https://doi.org/10.1029/2000JD900438
  23. Lee, D.-K., Cha, D.-H., and Choi, S.-J., 2005, A sensitivity study of regional climate simulation to convective parameterization schemes for 1998 East Asian summer monsoon. Journal of Terrestrial, Atmospheric and Oceanic Sciences, 16, 989-1015.
  24. Lee, D.-K and S.-J. Choi, 2010, Observatin and numerical prediction of torrential rainfall over Korea caused by Typhoon Rusa (2002). Journal of Geophysical Research, 115, D12105, doi:10.1029/2009JD012581.
  25. Suh, M.S. and Lee, D.K., 2004, Impact of land/cover changes on surface climate over east Asia for extreme climate cases using RegCM2. Journal of Geophysical Research, 109, D02108, doi:10.1029/2003JD003681.
  26. Xie, P. and Arkin, P.A., 1997, Global precipitation: A 17- year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bulletin of the American Meteorological Society, 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
  27. Yhang, Y.B. and Hong, S.Y., 2008, A simulated climatology of the east asian summer monsoon using a Regional Spectral Model. Asia-Pacific Journal of Atmospheric Sciences, 44, 325-339.
  28. CGIAR CSI Portal, 2010, CRU-TS3.0. http://www.cgiarcsi. org/data/item/55-cru-ts-30-climate-database (검색일: 2011. 12. 26)

Cited by

  1. Present-Day Climate of the Korean Peninsula Centered Northern East Asia Based on CMIP5 Historical Scenario Using Fine-Resolution WRF vol.23, pp.4, 2013, https://doi.org/10.14191/Atmos.2013.23.4.527
  2. Characteristics of Daily Precipitation Data Based on the Detailed Climate Change Ensemble Scenario Depending on the Regional Climate Models and the Calibration vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.261
  3. Comparison of Characteristics and Spatial Distribution Tendency of Daily Precipitation based on the Regional Climate Models for the Korean Peninsula vol.15, pp.4, 2015, https://doi.org/10.9798/KOSHAM.2015.15.4.59
  4. Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.669
  5. Projection on First Flowering Date of Cherry, Peach and Pear in 21st Century Simulated by WRFv3.4 Based on RCP 4.5 and 8.5 Scenarios vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.693
  6. Assessment and prediction of the first-flowering dates for the major fruit trees in Korea using a multi-RCM ensemble vol.37, pp.3, 2016, https://doi.org/10.1002/joc.4800