• Title/Summary/Keyword: Annealing temperature

Search Result 2,744, Processing Time 0.03 seconds

The Effects of Annealing Temperature on The Physical Properties and Fine Structure of Poly(trimethylene terephthalate)(PTT) Fibers (열처리 온도가 Poly(trimethylene terephthalate)(PTT) 섬유의 역학적 성질과 미세구조에 미치는 효과)

  • Jeong, Kyung Hui;Lee, Eon Pil;Lee, Jae Ho
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.985-992
    • /
    • 2013
  • Polytrimethylene terephthalate(PTT) offers several advantageous properties such as good tensile strength, uniformity, stiffness, toughness, UV stability, resilience, stain resistance, outstanding elastic recovery, and dyeability. The effects of annealing temperature on physical properties and the structure of PTT filaments and yarn were investigated by measuring wide-angle X-ray diffraction (WAXD), density, optical birefringence, dynamic visco elasticity, and tensile testing. The intensity of maximum tan ${\delta}$ decreased and the temperature of maximum tan ${\delta}$ shifted to a higher temperature as the annealing temperature of filaments increased; however, it shifted to a lower temperature when the annealing temperature exceeded $130^{\circ}C$. In addition, crystallinity, density and D-spacing of (010) crystal face increased as the annealing temperature increased. Optical birefringence and specific stress were almost constant up to $100^{\circ}C$ and then decreased above $130^{\circ}C$. The shrinkage of PTT filament is 0 in boiling water when annealed above $130^{\circ}C$; consequently, the use of annealed fiber above $130^{\circ}C$ can remove thermal instability when dyeing PTT fiber. In the case of yarns, the thermal stability and physical properties of yarns showed the best effect when the ply number is less than 5, twist number is less than 400tpm, and the annealing time is 20minutes.

The Study on the Characteristics of ReRAM with Annealing Temperature and Oxide Thickness (열처리 온도 및 산화층 두께에 따른 ReRAM 특성 연구)

  • Choi, Jin-hyung;Lee, Seung-cheol;Cho, Won-Ju;Park, Jong-tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.722-725
    • /
    • 2013
  • In this work, we have been analyzed the characteristics of ReRAM with different annealing condition and temperature. The ReRAM devices with top electrode=150nm, bottom electrode=150nm, oxide thickness=70nm and annealing temperature=$500^{\circ}C$, $850^{\circ}C$ have been used in characterization. The Set/Reset voltage, sensing window and resistivity have been characterized. From the measurement results, the Set/Reset voltage and sensing window have been enhanced as the annealing temperature has been increased. But it has been decreased as the temperature performance has been increased. In case of the annealing temperature=$850^{\circ}C$, the variation of Set/Reset voltage was lower than that of other condition. But the variation of sensing window was the lowest when the annealing temperature was $500^{\circ}C$. With considering the variation of Set/Reset voltage and sensing window, the devices annealed at $850^{\circ}C$ showed the best performance to ReRAM.

  • PDF

Effect of annealing treatment on gelatinization of upland and lowland waxy brown rice starches (아닐링 처리가 밭벼와 논벼 찹쌀 전분의 호화에 미치는 영향)

  • Kim, Sung-Kon
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.187-189
    • /
    • 1991
  • Gelatinization temperatures of upland and lowland waxy brown rice starches annealed at $25^{\circ}C$ and $60^{\circ}C$ for 24hr were investigated with differential scanning calorimetry No annealing effect was observed at low temperature. The upland rice starch showed narrower range of gelatinization temperature upon annealing treatment at $60\circ}C$ compared with the lowland rice starch. The enthalpy of gelatinization was not changed in case of the upland rice starch but was increased in case of the lowland one upon annealing.

  • PDF

The Effects of the Annealing Heat Treatments and Testing Temperatures on the Mechanical Properties of the Invar Materials (인바재료의 기계적 성질에 미치는 풀림 열처리와 시험온도의 영향)

  • Won, Si-Tae;Kim, Jong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.167-176
    • /
    • 2001
  • The effects of heat treatments and testing temperatures on the mechanical properties of Invar materials were investigated through experiments, which call influence the formability in metal forming fields. Annealing temperatures were changed from $900^{\circ}C$ to $1200^{\circ}C$ with an increment of $100^{\circ}C$ under two different furnace atmosphere(vacuum and H$_2$gas). Microstructure and hardness tests were performed for annealed specimens at room temperature(RT) and tensile tests were also performed by changing annealing temperatures as well as testing temperatures from RT to $300^{\circ}C$. The grain size of annealed materials increased with increasing annealing temperature, while micro-hardness distributions showed almost same hardness values regardless of annealing temperatures. Strength ratio (tensile/yield strength), which influences the forming characteristics of sheet metal, remained almost constant for various experimental conditions in case of unannealed specimens. However, it showed increasing tendency with increasing both annealing and testing temperatures, particularly at the testing temperature higher than $200^{\circ}C$. Therefore it can be concluded that press formability of fully-annealed Invar material can be improved by warm forming technique.

  • PDF

Effects of Thermal Annealing on the Properties of Amorphous Carbon Nitride Films Deposited by PECVD (PECVD로 제조된 비정질 질화탄소 박막의 물성에 미치는 열처리 효과)

  • Moon, Hyung-Mo;Kim, Sang-Sub
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.303-308
    • /
    • 2003
  • Amorphous carbon nitride films deposited on Si(001) substrates by a plasma enhanced chemical vapor deposition (PECVD) technique using CH$_4$and $N_2$as reaction gases were thermally annealed at various temperatures under$ N_2$atmosphere, then their physical properties were investigated particularly as a function of annealing temperature. Above $600^{\circ}C$ a small amount of crystalline $\beta$-$C_3$$N_4$ phase evolves, while the film surface becomes very rough due to agglomeration of fine grains on the surface. As the annealing temperature increases, both the hardness and the $sp^3$ bonding nature are enhanced. In contrast to our expectation, higher annealing temperature results in a relatively higher friction mainly due to big increase in roughness at that temperature.

Temperature-dependent Morphology of Self-assembled InAs Quantum Dots Grown on Si Substrates (Si 기판 위에 형성된 InAs 양자점의 열처리에 의한 표면 상태의 변화)

  • Yoo, Choong-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.864-868
    • /
    • 2007
  • Effect of high-temperature annealing on morphology of fully coherent self-assembled InAs quantum dots' grown on Si (100) substrates at $450^{\circ}C$ by atmospheric pressure metalorganic chemical vapor deposition(APMOCVD) was investigated by atomic force microscopy(AFM). When the dots were annealed at 500 - 600$^{\circ}C$ for 15 sec - 60 min, there was no appreciable change in the dot density but the heights of the dots increased along with the reduction in the diameters. In segregation from the InAs quantum dots and/or from the 2-dimensional InAs wetting layer which was not transformed into quantum dots looked responsible for this change in the dot size. However the change rates remained almost same regardless of annealing time and temperature, which may indicate that the morphological change due to thermal annealing is done instantly when the dots are exposed to high temperature annealing.

Annealing Effects on Electron Transport properties of Nanostructured Thin Film (Annealing에 의한 나노구조 박막의 전기적 특성 연구)

  • Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.98-101
    • /
    • 2006
  • Electron transport properties of nanostructured Pb thin film, consisting of grains, have been studied. Nanostructured thin films were fabricated on a substrate held at low temperature and their thicknesses were less than 10nm. While temperature of the film increased from 1.3 K to room temperature, the change in normal state sheet resistance has been measured. As the annealing temperature varies, the normal state sheet resistance shows a non-monotonic and irreversible change. Such behavior can be understood with the Pb grain growth due to annealing of the film.

Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD

  • Kim, Jin-Yong;Choi, Yong-June;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.73-78
    • /
    • 2012
  • The chemical, electrical, and optical properties of ZnO and Al-doped ZnO films after high temperature annealing were studied. The resistivity increased significantly after annealing at $600^{\circ}C$ under $10^{-10}$ Torr atmosphere. The mechanism of the resistivity change was explored using photoemission spectroscopy and photoluminescence spectrometer. The results indicated that the amount of oxygen deficient region O-Zn bonds decreased and oxygen vacancy was decreased after the high temperature vacuum annealing. The increase in the resistivity of ZnO and Al-doped ZnO films was resulted from the decrease in carrier concentration due to a decrease in the amount of oxygen deficiency.

A Surface Etching for Synthetic Diamonds with Nano-Thick Ni Films and Low Temperature Annealing

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • Ni (100 nm thick) was deposited onto synthesized diamonds to fabricate etched diamonds. Next, those diamonds were annealed at varying temperatures ($400{\sim}1200^{\circ}C$) for 30 minutes and then immersed in 30 wt% $HNO_3$ to remove the Ni layers. The etched properties of the diamonds were examined with FE-SEM, micro-Raman, and VSM. The FE-SEM results showed that the Ni agglomerated at a low annealing temperature (${\sim}400^{\circ}C$), and self-aligned hemisphere dots formed at an annealing temperature of $800^{\circ}C$. Those dots became smaller with a bimodal distribution as the annealing temperature increased. After stripping the Ni layers, etch pits and trigons formed with annealing temperatures above $400^{\circ}C$ on the surface of the diamonds. However, surface graphite layers existed above $1000^{\circ}C$. The B-H loop results showed that the coercivity of the samples increased to 320 Oe (from 37 Oe) when the annealing temperature increased to $600^{\circ}C$ and then, decreased to 150 Oe with elevated annealing temperatures. This result indicates that the coercivity was affected by magnetic domain pinning at temperatures below $600^{\circ}C$ and single domain behavior at elevated temperatures above $800^{\circ}C$ consistent with the microstructure results. Thus, the results of this study show that the surface of diamonds can be etched.

Annealing Characteristics of Pt-Co Alloy thin Films for RTD Temperature Sensors (RTD용 Pt-Co 합금박막의 열처리 특성)

  • Hong, Seog-Woo;Seo, Jeong-Hwan;No, Sang-Soo;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1349-1351
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_2O_3$ substrates by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : $4.4 W/cm^2$. Co:6.91W/$cm^2$. working vacuum of 10 mTorr and annealing conditions of $1000^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively. The TCR value of Pt-Co alloy thin films was measured with various thickness of thin films and annealing conditions. The optimum TCR value is gained under conditions $3000{\AA}$ of thin films thickness and $1000^{\circ}C$ of annealing temperature. These results indicate that Pt-Co alloy thin films have potentiality for the high resolution RTD temperature sensors.

  • PDF