DOI QR코드

DOI QR Code

Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD

  • Kim, Jin-Yong (Department of Materials Science and Engineering, Yonsei University) ;
  • Choi, Yong-June (Department of Materials Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Materials Science and Engineering, Yonsei University)
  • Received : 2012.06.18
  • Accepted : 2012.06.28
  • Published : 2012.06.30

Abstract

The chemical, electrical, and optical properties of ZnO and Al-doped ZnO films after high temperature annealing were studied. The resistivity increased significantly after annealing at $600^{\circ}C$ under $10^{-10}$ Torr atmosphere. The mechanism of the resistivity change was explored using photoemission spectroscopy and photoluminescence spectrometer. The results indicated that the amount of oxygen deficient region O-Zn bonds decreased and oxygen vacancy was decreased after the high temperature vacuum annealing. The increase in the resistivity of ZnO and Al-doped ZnO films was resulted from the decrease in carrier concentration due to a decrease in the amount of oxygen deficiency.

Keywords

References

  1. S. Major and K. L. Chopra, "Indium-doped Zinc Oxide films transparent electrodes for solar cells", Sol. Energy Mater., 17, 319 (1998).
  2. U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do an, V. Avrutin, S.-J. Cho and H. Morkoc, "A comprehensive review of ZnO materials and devices", J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666
  3. S.-C. Gong, I.-S. Shin, S. Bang, H. Kim, S.-O. Ryu, H. Jeon, H.-H. Park, C.-H. Yu and H. J. Chang, "Dependence of $O_{2}$ Plasma Treatment of Cross-Linked PVP Insulator on the Electrical Properties of Organic-Inorganic Thin Film Transistors with ZnO Channel Layer", J. Microelectron. Packag. Soc., 16(2), 21 (2009).
  4. S.-C. Gong, S.-O. Ryu, S. Bang, W. Jung, H. Jeon, H. Kim, Y. Choi, H.-H. Park and H. J. Chang, "Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition", J. Microelectron. Packag. Soc., 16(4), 17 (2009).
  5. T. Minami, S. Suzuki and T. Miyata, "Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering", Thin Solid Films, 398-399, 53 (2001). https://doi.org/10.1016/S0040-6090(01)01303-7
  6. J. Y. Kim, Y.-J. Choi, H.-H. Park, S. Golledge and D.C. Johnson, "Effective atomic layer deposition procedure for Aldopant distribution in ZnO thin films", J. Vac. Sci. Technol. A, 28(5), 1111 (2010). https://doi.org/10.1116/1.3460905
  7. Y. Zhang, G. Du, X. Yang, B. Zhao, Y. Ma, T. Yang, H. C. Ong, D. Liu and S. Yang, "Effect of annealing on ZnO thin films grown on (001) silicon substrate by low-pressure metalorganic chemical vapour deposition", Semicond. Sci. Technol., 19, 755 (2004). https://doi.org/10.1088/0268-1242/19/6/017
  8. V. Shelke, E. K. Sonawane, M. P. Bhole and D. S. Patil, "Anneaing temperature effect on the aluminium doped ZnO films for transparent electronics", Optoelectron. Adv. Mater.-Rapid Commun., 2, 666 (2008).
  9. S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.- C. Wang and W.-F. Hsieh, "Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films", J. Cryst. Growth, 287, 78 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.047
  10. G. J. Fang, D. J. Li and B.-L. Yao, "Effect of vacuum annealing on the properties of transparent conductive AZO thin films prepared by DC magnetron sputtering", Phys. Stat. Sol. (a), 193, 139 (2002). https://doi.org/10.1002/1521-396X(200209)193:1<139::AID-PSSA139>3.0.CO;2-D
  11. W.-J. Lee, C.-R. Cho, K.-M. Cho and S.-Y. Jeong, "Rapid thermal annealing effect of Al-doped ZnO thin films", J. Korean Phys. Soc., 47, S296 (2005). https://doi.org/10.3938/jkps.47.296
  12. E. B. Yousfi, J. Fouache and D. Lincot, "Study of atomic layer epitaxy of zinc oxide by in-situ quartz crystal microgravimetry", Appl. Surf. Sci., 153, 223 (2000). https://doi.org/10.1016/S0169-4332(99)00330-X
  13. T. Szorenyi, L. D. Laude, I. Bertoti, Z. Kantor and Z. Geretovszky, "Excimer laser processing of indium-tin-oxide films: An optical investigation", J. Appl. Phys., 78, 6211 (1995). https://doi.org/10.1063/1.360567
  14. L. K. Rao and V. Vinni, "Novel mechanism for high speed growth of transparent and conducting tin oxide thin films by spray pyrolysis", Appl. Phys. Lett., 63, 608 (1993). https://doi.org/10.1063/1.109964
  15. J. C. C. Fan and J. B. Goodenough, "X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films", J. Appl. Phys., 48, 3524 (1977). https://doi.org/10.1063/1.324149

Cited by

  1. The Effect of Precursor Concentration on ZnO Nanorod Grown by Low-temperature Aqueous Solution Method vol.20, pp.1, 2013, https://doi.org/10.6117/kmeps.2013.20.1.033
  2. Thickness-dependent Electrical, Structural, and Optical Properties of ALD-grown ZnO Films vol.21, pp.2, 2014, https://doi.org/10.6117/kmeps.2014.21.2.031