• Title/Summary/Keyword: Angular misalignment

Search Result 26, Processing Time 0.029 seconds

Fatigue Life Analysis for Angular Contact Ball Bearing with Angular Misalignment (각 어긋남을 고려한 각접촉 볼베어링의 피로수명 해석)

  • Bae, Gyu-Hyun;Tong, Van-Canh;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.1
    • /
    • pp.53-61
    • /
    • 2016
  • Angular misalignment has a significant effect on the characteristics of angular contact ball bearings (ACBBs). This paper presents an analysis of fatigue life for ACBBs subjected to angular misalignment. A simulation model is developed with de Mul's bearing model and the ISO basic reference rating life model. Simulation is performed to calculate the life of the ACBBs subjected to angular misalignment. The numerical results show that angular misalignment influences the load distribution significantly, thus reducing the bearing rating life. The fatigue life of ACBBs is decreased by angular misalignment regardless of axial preload, external radial load and rotational speed. The results show that angular misalignment should be maintained at less than 1mrad for ACBBs.

Dynamic Analysis of Spindle with Angular Contact Ball Bearings Subjected to Angular Misalignment (각접촉 볼베어링으로 지지된 스핀들의 정렬오차에 의한 동특성 변화 해석)

  • Bae, Gyu-Hyun;Hong, Seong-Wook;Yoon, Young-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.368-373
    • /
    • 2014
  • This paper presents the dynamic modeling and analysis results for a spindle supported by angular contact ball bearings (ACBBs) subjected to angular misalignment. Although ACBBs are widely used in spindle systems, their characteristics in regard to angular misalignment have rarely been investigated. A simulation program was developed to calculate the dynamic characteristics of a simple spindle model that is supported by angular contact ball bearings subjected to angular misalignment. Angular misalignment is shown to introduce anisotropy into the angular contact ball bearings and then split the natural frequencies in spindles. Simulations were also performed to show the possibility of evaluating bearing misalignment using natural frequency measurements.

Study of Dynamic Characteristics of Angular Misalignment of High-pressure Turbine in 1000MW Nuclear Power Plant (축정렬 불량시 베어링 특성 변화에 따른 발전소 증기 터빈의 동특성 연구)

  • Sohn, Seok-Man;Lee, Jun-Shin;Yoo, Ki-Wan;Lee, Sun-Ki;Kim, Tae-Ryong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.664-669
    • /
    • 2000
  • Angular misalignment is one of the important causes for shaft vibration of turbine-generator in 1000MW nuclear power plant. It may cause the plant unexpected shutdown and subsequent accident. The change of dynamic characteristics in journal bearing and rotor due to angular misalignment in high pressure turbine is analyzed. The stiffness/damping coefficients of journal bearing increase as angular misalignment. Subsequently the natural frequency of HP turbine is changed. It was found that the natural frequency may locate near 2 times operating frequency in case of severe misalignment.

  • PDF

The analysis on the shape of a Standard Test Specimen for the Torsion Test and The Effects of Misalignments (비틀림 시험에 대한 표준시험시편 형상 및 축 정렬 이상 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Park, Chi-Yong;Heo, Yong-Hak;Je, Jin-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.155-160
    • /
    • 2008
  • Using a three-dimensional (3-D) FE analyses, this paper provides the shape optimization of the standard test specimen for the torsion test, as well as a method for analyzing effects of misalignment under the angular and concentric misalignment. For verification, FE analysis is performed, which is designed for the perfectly full-model. To optimize the design shape of the torsion-controlled fatigue test specimen, we performed sensitivity analysis using shape parameters. Additionally, two kinds of misalignment (angular misalignment and concentric misalignment) are applied to the circular and tubular specimens to show effects of misalignments in the FE analysis. The present results will provide valuable information for designing shafts for every kind of mechanical system under torsional force.

  • PDF

Calculation of Unbalanced Magnetic Pull of Induction Motors due to Rotor Misalignment (경사 편심에 의한 유도전동기의 자기흡인력 평가)

  • Kim, S.H.;Yang, B.S.;Kim, H.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1321-1327
    • /
    • 2006
  • This paper presents the calculation of unbalanced magnetic pull (UMP) that causes rotor misalignment in induction motor. The excessive noise and vibration will be occurred by means of rotor misalignment. Angular misalignment of rotor will produce air-gap permeance wave which is function of axial and circumferential coordinate. In this paper, the UMP is calculated using permeance and magneto motive force (MMF) in the case of static and dynamic misalignment. Based on the percentage of misalignment, the result shows that the UMP and magnetic pressure are increased according to the increasing of misalignment. The UMP is occurred not only in It frequency component but also the others.

  • PDF

Design of a Rechargeable Battery Wireless Charging System

  • Kim, Dae-Hyun;Yeo, Tae-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.210-213
    • /
    • 2016
  • This paper presents a wireless power charging system for rechargeable batteries. Recently, misalignment between transmitting coil and receiving coils has been a significant factor to wireless power charging systems, which are prone to lateral and angular misalignment. Unfortunately, the batteries can be easily rolled because of the shape, and coils are often misaligned while charging devices, in practical situations. This paper presents the wireless power battery charging system. In order to solve the angular misalignment, two perpendicular coil having structure of 'plus (+)' shape was proposed. To validate the results, the proposed wireless power charging system was implemented at 6.78 MHz using loosely coupled resonant coils, and the system was verified as being robust to misalignment.

Effects of Axial Misalignments on the Torque Specimens Using Finite Element Analysis (유한요소해석기법을 이용한 토크 시편의 축 오열 영향 분석)

  • Kim, Ju-Hee;Kim, Yun-Jae;Huh, Yong-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1461-1469
    • /
    • 2011
  • Using three-dimensional (3-D) FE analyses, this paper provides a method for analyzing the effects on stresses and strains produced by angular and concentric misalignment of a test specimen for a torsion test. To quantitativele compare of the FE results, the average bending strain for the angular, concentric, and combined misalignment was proposed. To verify the effects of axial misalignment of the test specimens, we used both circular and tubular specimens. From the FE results, we proposed general predictions for the effects caused by the various types of axial misalignment and its direction. In addition, we confirmed the effect of initial yielding moment based on the initial yielding condition for axial misalignment of specimens in torsion tests.

A study on the Thermal Deformation of Line Heated TMCP and Normalizing Steel (선상가열한 TMCP 및 Normalizing 강재의 열변형에 관한 연구)

  • Kim, Jeong-Tae;Lee, Kwang-Sung;Jeong, Hyo-Min;Chung, Han-Shik
    • Journal of Power System Engineering
    • /
    • v.20 no.5
    • /
    • pp.46-51
    • /
    • 2016
  • The TMCP steel has expanded in the marine structure during manufacturing process because of its excellent weld-ability and impact toughness. In the case of merchant ships, coverage of TMCP steel has been used widely on over DH36 Classifications material. The line heating process is applied to the outer surface of the steel plate for the shipbuilding. In this study, We compared between TMCP and normalizing steel for shipbuilding by analyzing some basic data through performing the natural cooling after the line heating. The experimental results show the angular misalignment changes in line heating. Heated surface of normalizing steel material expanded to $-0.3^{\circ}$ and reduced to $+0.2^{\circ}$ after cooling. And during cooling at $194^{\circ}C$ for 1,500 seconds, Angular Misalignment began from - direction to + direction, passed the critical point to the default at 2,200 seconds and did not take place any more at $103^{\circ}C$ after the 2,700 seconds. Angular Misalignment results of TMCP steels and Normalizing steel material show same angular misalignment lasted 1,200 seconds, TMCP steel has given more expansion and contraction angle which is $0.2^{\circ}$ than that of the Normalizing steel. Length difference between expansion and contraction is about 0.3 mm.

On the dynamic instability analysis of mechanical face seals (기계평면시일의 동적 불안정성에 관한 연구)

  • 김청균;서태석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1509-1514
    • /
    • 1990
  • To investigate the seal dynamic instability for a misaligned and coned mechanical face seal, the finite difference approximation was employed to solve the modified Reynolds equation for an incompressible fluid and temperature dependent viscosity. Using the solution, the results for axial force, transverse moment, restoring moment, and ratio of the transverse moment and the restoring moment are calculated for the whole range from zero to full angular misalignment. The results indicate that the transverse moment due to the angular misalignment and coning terms affects considerably the dynamic instability of face seals. It is shown that the simplified treatment of Reynolds equation using the narrow seal approximation overestimate the ratio of the transverse moment to the restoring moment especially at touch.

Failure Analysis of Optical Disk Drives Using the Vibration Signal Analysis (진동신호분석을 통한 광디스크 드라이브의 고장원인분석)

  • Park Youngpil;Shin Changho;Chung Jintai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.7 s.238
    • /
    • pp.1028-1034
    • /
    • 2005
  • In this paper, the failure analysis of an optical disk drive is carried out and the limit ranges of the misalignment f3r the higher performance are presented. Since optical disks are removable from optical disk drive, the translational and angular misalignments, which causes read/write errors, always exist. Therefore, the limit ranges of the misalignment should be investigated. For this reason, the failure analysis by the vibration analysis is studied. The influences of the misalignment are tested by the aging test. And the limit ranges of the misalignment are proposed for the reliability of optical disk drives.