• 제목/요약/키워드: Angular deformation

검색결과 212건 처리시간 0.027초

순수 지르코늄의 ECAP공정에서 금형의 변형 및 채널각이 재료의 변형거동에 미치는 영향 (Effects of Die Deformation and Channel Angle on Deformation Behavior of Materials During Equal Channel Angular Pressing with Pure-Zr)

  • 권기환;채수원;권숙인;김명호
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1751-1758
    • /
    • 2001
  • Among severe plastic deformation processes, ECAP has drawn much attention due to its advantages including ultra-fine grain size material production. In this paper, ECAP process with pure -Zirconium is investigated due to its applicability to nuclear reactors. The finite element method is employed to investigate the deformation behavior of materials during ECAP process. In particular, effects of process parameters such as die deformation and channel angles on the material behaviors have been investigated. Experimental studies have also been performed to verify the numerical results.

등통로각압축(ECAP) 공정에서 재료의 물성에 따른 변형 거동의 유한요소해석 (Finite Element Analysis of Deformation Behavior due to Material Properties during Equal Channel Angular Pressing)

  • 배강호;권기환;채수원;권숙인;김명호;황선근
    • 한국정밀공학회지
    • /
    • 제19권8호
    • /
    • pp.187-193
    • /
    • 2002
  • Much research efforts have been made on the equal channel angular pressing (ECAP) which produces ultra-fine grains. Among many process parameters such as channel angles, frictions, die deformations and materials employed, the effects of material properties on the deformation behavior have been investigated. The finite element method has been used to investigate this issue.

CNT/Cu 혼합분말의 ECAP 공정 시 치밀화 및 소성변형 거동 해석 (Analyses of Densification and Plastic Deformation during Equal Channel Angular Pressing of CNT/Cu Powder Mixtures)

  • 팜쾅;윤승채;정영기;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.123-126
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

Pure-Zr의 ECAP공정에서 마찰의 영향 (Frictional Effect during Equal Channel Angular Pressing(ECAP) with Pure-Zr)

  • 박상석;권기환;채수원;권숙인;김명호;황선근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.409-412
    • /
    • 2000
  • Much research efforts have been made on the structure and properties of metals deformed to severe plastic deformation (SPD). Being deformed to SPD, ultra-fine grains (UFG) are usually formed, and UFG structure exhibits fundamental differences in original physical properties. One method often used to obtain SPD is equal channel angular pressing (ECAP). In order for this technique to be exploited, it is important to understand the deformation behavior during the ECAP processing with respect to friction. The finite element method (FEM) has been used to investigate this issue.

  • PDF

강판표면의 유도가열에 관한 연구 (A Study on the Flat-Type Induction Heating of Steel Plate)

  • 윤진오;양영수
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.948-954
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction and induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape and other process variables for maximum angular deformation were proposed.

ECAP으로 제조된 초미세림 Al-Mg 합금의 동적 변형거동 (High-Strain Rate Deformation of Ultra-Fine Grained Al-Mg Alloys Fabricated by Equal-Channel Angular Pressing)

  • 김양곤;고영건;신동혁;이성학
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.306-309
    • /
    • 2009
  • The influence of equal-channel angular pressing (ECAP) route on dynamic deformation behavior of ultra-fine grained Al-4.4%Mg alloys was investigated in this study. The 8-pass ECAPed specimens consisted of ultra-fine grains of $0.5{\mu}m$ in size, and contained the considerable amount of second phase particles, which were fragmented and distributed homogeneously in the matrix. The result of dynamic torsional tests indicated that the maximum shear stress and fracture shear strain were lowest in the specimen deformed by ECAP via route A among the 8-pass ECAPed specimens. The formation of adiabatic shear bands was addressed by concepts of critical shear strain, deformation energy required for void initiation, and microstructural homogeneity related to ECAP routes.

  • PDF

Equal Channel Angular Pressing 공정을 이용한 CNT/Cu 복합분말의 고형화 (The consolidation of CNT/Cu mixture powder using equal channel angular pressing)

  • 윤승채;팜쾅;김형섭
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.119-122
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of 1 vol.% carbon nanotube (CNT)-metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT-Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature. It was found by mechanical testing of the consolidated 1 vol.% CNT-Cu that high mechanical strength could be achieved effectively as a result of the Cu matrix strengthening and improved particle bonding during ECAP. The ECAP processing of powders is a viable method to achieve fully density CNT-Cu nanocomposites.

  • PDF

ECAP 공정을 이용한 분말의 치밀화 (Powder Densification Using Equal Channel Angular Pressing)

  • 윤승채;서민홍;홍순익;김형섭
    • 한국분말재료학회지
    • /
    • 제13권2호
    • /
    • pp.124-128
    • /
    • 2006
  • In recent years, equal channel angular pressing (ECAP) has been the subject of intensive study due to its capability of producing fully dense samples having a ultrafine grain size. In this paper, the ECAP process was applied to metallic powders in order to achieve both powder consolidation and grain refinement. In the ECAP process for solid and powder metals, knowledge of the internal stress, strain and strain rate distribution is fundamental to the determination of the optimum process conditions for a given material. The properties of the ECAP processed solid and powder materials are strongly dependent on the shear plastic deformation behavior during ECAP, which is controlled mainly by die geometry, material properties, and process conditions. In this study, we investigated the consolidation, plastic deformation and microstructure evolution behaviour of the powder compact during ECAP.

마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석 (Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method)

  • 윤승채;팜쾅;김형섭
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

온간 ECAP 공정에서 Zr-702 합금의 변형거동해석 (Deformation Behavior Analysis of Zr-702 Alloy during ECAP at Elevated Temperature)

  • 이강무;권기환;채수원;권숙인;김명호;황선근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.877-881
    • /
    • 2002
  • Much research efforts have been made on the equal channel angular pressing(ECAP) which produces ultra-fine grains. In this paper the ECAP processes with Zr-702 alloy at elevated temperature and at room temperature are considered. Both two-dimensional and three-dimensional finite element analyses have been employed to investigate the deformation behaviors of specimen during ECAP process.

  • PDF