Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method

마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석

  • Yoon, Seung Chae (Department of Nano Material Engineering Chungnam National University) ;
  • Pham, Quang (Department of Nano Material Engineering Chungnam National University) ;
  • Kim, Hyoung Seop (Department of Nano Material Engineering Chungnam National University)
  • 윤승채 (충남대학교 나노공학부) ;
  • 팜쾅 (충남대학교 나노공학부) ;
  • 김형섭 (충남대학교 나노공학부)
  • Received : 2007.11.29
  • Published : 2008.03.22

Abstract

Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

Keywords

Acknowledgement

Supported by : 한국과학재단

References

  1. A. Yamshita, Z. Horita and T. G. Langdon, Mater. Sci. Eng. 300 A, 142 (2001)
  2. S. Y. Chang, H. Tezuka and A. Kamio, Mater. Trans. 38, 526 (1997) https://doi.org/10.2320/matertrans1989.38.526
  3. Magnesium handbook, Japan. Inst. Light Metal p.79 (1975)
  4. Y. Miyahara, Z. Horita and T. G. Langdon, Mater. Sci. Eng. 420 A, 240 (2006)
  5. R. B. Figueiredo and T. G. Langdon, Mater. Sci. Eng. 430 A, 151 (2006)
  6. H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Mater. 46, 851 (2002) https://doi.org/10.1016/S1359-6462(02)00064-7
  7. H. S. Kim, M. H. Seo and S. I. Hong, Mater. Sci. Eng. 291 A, 86 (2000)
  8. H. S. Kim, Mater. Sci. Eng. A315, 122 (2001)
  9. I. H. Son, J. H. Lee and Y. T. Im, J Mater. Proc. Tech. 171, 480 (2006) https://doi.org/10.1016/j.jmatprotec.2005.11.001
  10. S. C. Yoon, M. H. Seo and H. S. Kim, Scripta Mater. 55, 159 (2006) https://doi.org/10.1016/j.scriptamat.2006.03.046
  11. S. C. Yoon, C. H. Bok, S. I. Hong and H. S. Kim, J. Kor. Inst. Met. Mater. 45, 473 (2007)
  12. Y. Nishida, H. Arima, J.C. Kim and T. Ando, Scripta Mater. 45, 261 (2001) https://doi.org/10.1016/S1359-6462(01)00985-X
  13. Y. Nishida, T. Ando, M. Nagase and S.W. Lim, Scripta Mater. 46, 211 (2002) https://doi.org/10.1016/S1359-6462(01)01226-X
  14. A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu and T. Imura, Acta Mater. 53, 211 (2005) https://doi.org/10.1016/j.actamat.2004.09.017
  15. R. Y. Lapovok, J. Mater. Sci. 40, 341 (2005) https://doi.org/10.1007/s10853-005-6088-0
  16. P. W. J. Mckenzie, R. Lapovok and Y. Estrin, Acta Mater. 55, 2985 (2007) https://doi.org/10.1016/j.actamat.2006.12.038
  17. K. Xia and X. Wu, Scripta Mater. 53, 1225 (2005) https://doi.org/10.1016/j.scriptamat.2005.08.012
  18. R. Lapovok, Int. J. Frac. 115, 159 (2002) https://doi.org/10.1023/A:1016399111787
  19. V. M. Segal, Mater. Sci. Eng. 197 A, 157 (1995)
  20. Y. Iwahashi, J. Wang, Z. Horita M. Nemoto and T. G. Langdon, Scripta Mater. 35, 143 (1996) https://doi.org/10.1016/1359-6462(96)00107-8
  21. C. MacCormack and J. Monaghan, J. Mater. Proc. Tech. 117, 209 (2001) https://doi.org/10.1016/S0924-0136(01)01139-6
  22. R. B. Figueiredo, P. R. Cetlin and T. G. Langdon, Acta Mater. 55, 3469 (2007)