Browse > Article

Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method  

Yoon, Seung Chae (Department of Nano Material Engineering Chungnam National University)
Pham, Quang (Department of Nano Material Engineering Chungnam National University)
Kim, Hyoung Seop (Department of Nano Material Engineering Chungnam National University)
Publication Information
Korean Journal of Metals and Materials / v.46, no.3, 2008 , pp. 144-149 More about this Journal
Abstract
Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.
Keywords
magnesium; equal channel angular pressing; finite element method; ductile fracture simulation; front pressure effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Y. Miyahara, Z. Horita and T. G. Langdon, Mater. Sci. Eng. 420 A, 240 (2006)
2 H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi, Scripta Mater. 46, 851 (2002)   DOI   ScienceOn
3 H. S. Kim, M. H. Seo and S. I. Hong, Mater. Sci. Eng. 291 A, 86 (2000)
4 I. H. Son, J. H. Lee and Y. T. Im, J Mater. Proc. Tech. 171, 480 (2006)   DOI   ScienceOn
5 S. C. Yoon, C. H. Bok, S. I. Hong and H. S. Kim, J. Kor. Inst. Met. Mater. 45, 473 (2007)
6 R. Y. Lapovok, J. Mater. Sci. 40, 341 (2005)   DOI
7 P. W. J. Mckenzie, R. Lapovok and Y. Estrin, Acta Mater. 55, 2985 (2007)   DOI   ScienceOn
8 K. Xia and X. Wu, Scripta Mater. 53, 1225 (2005)   DOI   ScienceOn
9 V. M. Segal, Mater. Sci. Eng. 197 A, 157 (1995)
10 Y. Iwahashi, J. Wang, Z. Horita M. Nemoto and T. G. Langdon, Scripta Mater. 35, 143 (1996)   DOI   ScienceOn
11 C. MacCormack and J. Monaghan, J. Mater. Proc. Tech. 117, 209 (2001)   DOI   ScienceOn
12 R. B. Figueiredo and T. G. Langdon, Mater. Sci. Eng. 430 A, 151 (2006)
13 R. B. Figueiredo, P. R. Cetlin and T. G. Langdon, Acta Mater. 55, 3469 (2007)
14 Y. Nishida, H. Arima, J.C. Kim and T. Ando, Scripta Mater. 45, 261 (2001)   DOI   ScienceOn
15 A. Ma, K. Suzuki, Y. Nishida, N. Saito, I. Shigematsu, M. Takagi, H. Iwata, A. Watazu and T. Imura, Acta Mater. 53, 211 (2005)   DOI   ScienceOn
16 Magnesium handbook, Japan. Inst. Light Metal p.79 (1975)
17 H. S. Kim, Mater. Sci. Eng. A315, 122 (2001)
18 R. Lapovok, Int. J. Frac. 115, 159 (2002)   DOI
19 S. C. Yoon, M. H. Seo and H. S. Kim, Scripta Mater. 55, 159 (2006)   DOI   ScienceOn
20 Y. Nishida, T. Ando, M. Nagase and S.W. Lim, Scripta Mater. 46, 211 (2002)   DOI   ScienceOn
21 S. Y. Chang, H. Tezuka and A. Kamio, Mater. Trans. 38, 526 (1997)   DOI
22 A. Yamshita, Z. Horita and T. G. Langdon, Mater. Sci. Eng. 300 A, 142 (2001)