• Title/Summary/Keyword: Analysis of electronic circuits

Search Result 152, Processing Time 0.024 seconds

Analysis and Degradation of leakage Current in submicron Device (미세소자에서 누설전류의 분석과 열화)

  • 배지철;이용재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.113-116
    • /
    • 1996
  • The drain current of the MOSFET in the off state(i.e., Id when Vgs=0V) is undesired but nevertheless important leakage current device parameter in many digital CMOS IC applications (including DRAMs, SRAMs, dynamic logic circuits, and portable systems). The standby power consumed by devices in the off state have added to the total power consumed by the IC, increasing heat dissipation problems in the chip. In this paper, hot-carrier-induced degra- dation and gate-induced-drain-leakage curr- ent under worse case in P-MOSFET\`s have been studied. First of all, the degradation of gate-induced- drain-leakage current due to electron/hole trapping and surface electric field in off state MOSFET\`s which has appeared as an additional constraint in scaling down p-MOSFET\`s. The GIDL current in p-MOSFET\`s was decreased by hot-electron stressing, because the trapped charge were decreased surface-electric-field. But the GIDL current in n-MOS77T\`s under worse case was increased.

  • PDF

Analysis of the LIGBT-based ESD Protection Circuit with Latch-up Immunity and High Robustness (래치-업 면역과 높은 감내 특성을 가지는 LIGBT 기반 ESD 보호회로에 대한 연구)

  • Kwak, Jae Chang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.686-689
    • /
    • 2014
  • Electrostatic discharge has been considered as a major reliability problem in the semiconductor industry. ESD reliability is an important issue for these products. Therefore, each I/O (Input/Output) PAD must be designed with a protection circuitry that creates a low impedance discharge path for ESD current. This paper presents a novel Lateral Insulated Gate Bipolar (LIGBT)-based ESD protection circuit with latch-up immunity and high robustness. The proposed circuit is fabricated by using 0.18 um BCD (bipolar-CMOS-DMOS) process. Also, TLP (transmission line pulse) I-V characteristic of proposed circuit is measured. In the result, the proposed ESD protection circuit has latch-up immunity and high robustness. These characteristics permit the proposed circuit to apply to power clamp circuit. Consequently, the proposed LIGBT-based ESD protection circuit with a latch-up immune characteristic can be applied to analog integrated circuits.

A Study on the Development of the High-frequency Power Generating System by Digital Control (디지털 제어형 고주파 전력발생장치 개발에 관한 연구)

  • Kim, Geum-Soo;Kim, Dong-Hee;Moon, Jong-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.401-406
    • /
    • 2012
  • The aim of this research is to develop more actual high-frequency power generators that includes various noise, to make flexible control systems for test or performance analysis of electric and electronic machines. It proposed power generating circuits using basic amplifier, B-level Push-Pull type, and FPGA for the easier control to get data and transmit. And it also testify to realize the proposed systems to report output data by input waveform and designed the digital LPF with MATLAB, universal simulation tools, for this study.

Analysis of the Operating Point and Fault Current Contribution of a PEMFC as Distributed Generation (DG)

  • Moon, Dae-Seong;Kang, Gi-Hyeok;Chung, Il-Yop;Won, Dong-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.382-388
    • /
    • 2009
  • Recently, hydrogen energy has been anticipated to change the paradigm of conventional power systems because it can expand sustainable energy utilization and conceptually provide remarkable flexibility to power system operation. Since hydrogen energy can be converted to electric energy through fuel cells, fuel cells are expected to play an important role in the future hydrogen economy. In this paper, a Proton Exchange Membrane Fuel Cell (PEMFC) is modeled as an equivalent circuit and its steady-state characteristics investigated using the model. PEMFCs can be connected to power systems through power conditioning systems, which consist of power electronic circuits, and which are operated as distributed generators. This paper analyzes the effects of the characteristics of the PEMFC internal voltages and investigated the dynamic responses of the PEMFC under fault conditions. The results show that the fault current contribution of the PEMFC is different from those of conventional generators and is closely related to its operating point.

Design and development of enhanced criticality alarm system for nuclear applications

  • Srinivas Reddy, Padi;Kumar, R. Amudhu Ramesh;Mathews, M. Geo;Amarendra, G.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.690-697
    • /
    • 2018
  • Criticality alarm systems (CASs) are mandatory in nuclear plants for prompt alarm in the event of any criticality incident. False criticality alarms are not desirable as they create a panic environment for radiation workers. The present article describes the design enhancement of the CAS at each stage and provides maximum availability, preventing false criticality alarms. The failure mode and effect analysis are carried out on each element of a CAS. Based on the analysis, additional hardware circuits are developed for early fault detection. Two different methods are developed, one method for channel loop functionality test and another method for dose alarm test using electronic transient pulse. The design enhancement made for the external systems that are integrated with a CAS includes the power supply, criticality evacuation hooter circuit, radiation data acquisition system along with selection of different soft alarm set points, and centralized electronic test facility. The CAS incorporating all improvements are assembled, installed, tested, and validated along with rigorous surveillance procedures in a nuclear plant for a period of 18,000 h.

Error Analysis of a Sensorless Position Estimation Considering Noise for Switched Reluctance Motor (노이즈 성분을 고려한 SRM 센서리스 위치 추정의 오차 해석)

  • 김갑동;최재동;이학주;안재황;성세진
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.74-81
    • /
    • 2001
  • The sensorless scheme for Switched Reluctance Motor(SRM) drives must have the robustness and reliability because the noise and error are sensitive. These elements make electrically noisy environments due to the proximity of high current power circuits with small signal electronic circuits when SRM drives. Also, due to the leakage inductances and finite coupling capacitances, these can cause the noise on any low voltage current and voltage measurement circuit. The position estimate error occurs because the current and voltage including the noise are sued as the inputs of sensorless algorithm. In this paper the high robustness and resistance of input noise re described. The fuzzy logic based rotor estimation algorithm and the observer model are used to reduce the tolerance of input data.

  • PDF

Experiences with Simulation Software for the Analysis of Inverter Power Sources in Arc Welding Applications

  • Fischer W.;Mecke H.;Czarnecki T.K.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.731-736
    • /
    • 2001
  • Nowadays various simulation tools are widely used for the design and the analysis of power electronic converters. From the engineering point of view it is rather difficult to parameterize power semiconductor device models without the knowledge of basic physical parameters. In recent years some data sheet driven behavioral models or so called 'wizard' tools have been introduced to solve this problem. In this contribution some experiences with some user-friendly power semiconductor models will be discussed. Using special simulation test circuits it is possible to get information on the static and dynamic behavior of the parameterized models before they are applied in more complex schemes. These results can be compared with data sheets or with measurements. The application of these models for power loss analysis of inverter type arc welding power sources will be described.

  • PDF

SPICE Based Analysis of a DC Servo Motor Speed Control System (SPICE를 이용한 직류서보전동기 속도제어시스템의 해석)

  • Min, Een-Kyu;Yoo, Sang-Gyu;Jang, Seong-Su;Park, Young-Jeen;Hong, Soon-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.455-458
    • /
    • 1994
  • This paper deals with the analysis of a DC servo motel speed control system with PI-controller using the SPICE, which was developed as n simulation program for electronic circuits. The system including PI-controller is needed to be modelled for SPICE analysis. The system is divided to motor part, power conversion part, and control part for effective simulations. The overall system is reconstructed by using the above models and the steady-state and transient state are analyzed through SPICE simulations. The simulation results are verified by comparing with the results obtained by conventional simulations.

  • PDF

Cross-Sectional Transmission Electron Microscopy Specimen Preparation Technique by Backside Ar Ion Milling

  • Yoo, Jung Ho;Yang, Jun-Mo
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.189-194
    • /
    • 2015
  • Backside Ar ion milling technique for the preparation of cross-sectional transmission electron microscopy (TEM) specimens, and backside-ion milling combined with focused ion beam (FIB) operation for electron holography were introduced in this paper. The backside Ar ion milling technique offers advantages in preparing cross-sectional specimens having thin, smooth and uniform surfaces with low surface damages. The back-side ion milling combined with the FIB technique could be used to observe the two-dimensional p-n junction profiles in semiconductors with the sample quality sufficient for an electron holography study. These techniques have useful applications for accurate TEM analysis of the microstructure of materials or electronic devices such as arrayed hole patterns, three-dimensional integrated circuits, and also relatively thick layers (> $1{\mu}m$).

Vertical Space Analysis for Gradient Radiating Steel-tube Radiographic Image (경사조사(傾斜照射) 강판튜브 방사선 관측영상의 수직 방향 공간분석)

  • Hwang, Jung-Won;Hwang, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.29-31
    • /
    • 2007
  • In this paper we propose an directional analytic approach in image data space for X-ray image which is detected from the X-ray projection system. Such a radiographic nondestructive testing has long been used for steel-tube inspection and weld monitoring. The welded area and thickness of steel-tube are detected from gradient radiating mechanism based on the evaluation of biased X-ray source position. The welded area is an ellipse type on low contrast X-ray image including noise. Noise originates from most of elements of the system. such as shielding CCD camera, imaging screen, X-ray source, inspected object, electronic circuits and etc.. Projection incorrectness and noise influence on imaging quality is to be represented by vertical pixels' distribution. Space analysis due to vertical direction also shows the segmental possibility between regions by visual edge evaluation.

  • PDF