• Title/Summary/Keyword: Analysis Section

Search Result 6,295, Processing Time 0.038 seconds

Analysis of RC beams under high temperature (고온에서의 RC보 거동해석)

  • 홍성걸;김형도;서연주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.155-160
    • /
    • 2002
  • This study is performed to analyze of reinforced concrete beams under fire and to calculate remaining strength. The analysis is based on the assumption that plane section remains plane after bending due to load and non-linear temperature increases. Finite difference method is used to find temperature field in a section. The residual strength is attained considering the effect of temperature rise on the mechanical properties of concrete, self-equilibrium stress and reduced section. Further research in much needed on the material models of concrete since it governs temperature distribution and theoretical results.

  • PDF

AN ERROR BOUND ANALYSIS FOR CUBIC SPLINE APPROXIMATION OF CONIC SECTION

  • Ahn, Young-Joon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.4
    • /
    • pp.741-754
    • /
    • 2002
  • In this paper we present an error bound for cubic spline approximation of conic section curve. We compare it to the error bound proposed by Floater [1]. The error estimating function proposed in this paper is sharper than Floater's at the mid-point of parameter, which means the overall error bound is sharper than Floater's if the estimating function has the maximum at the midpoint.

A Study on the Evaluation of the Flexibility of Joint Area including Circular Section (원형단면을 포함하는 결합부의 강성평가 방법 연구)

  • 국종영;박상준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.110-119
    • /
    • 2000
  • In this study, we considered the method evaluation the flexibility of joint area including member with circular section. We regarded the flexibility of joint area as translational and rotational springs for the purpose of expressing local deformation. We verified this method by the use of normal mode analysis. We also calculated this joint area occurring in penetration so as to apply this method to other cases. Compare with the shell element model. we can the considerably approximate values.

  • PDF

Analysis of Breaking Accident of FRP Insulator Rod installed in Dead Section (절연구간 조가선 FRP 절연봉의 절단사고 원인분석)

  • Jang, Don-Guk;Lee, Ki-Won;Kim, Ju-Rak;Park, Hyun-June
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.502-505
    • /
    • 2003
  • The accidnet of breaking insulator rod leads to inturruption of moving the subway. We investigate the analysis of analysis of breaking accident of FRP insulator rod installed in dead section for catenary feeding system. To analysis of accident reason, SEM is used to analysis microscopic struture on surface of cross section of broken FRP insulator rod. At the same time, we examine the chage of atomic amount on solace of accident insulator through EDX analysis. Also, the test for tensional breaking load is condoled to check the mechanical strength.

  • PDF

Analysis of the Curving Phenomenon of Curved Circular Shaped Product by the Upper Bound Analysis and the DEFORMTM-3D in Eccentric Extrusion (곡봉(曲奉)의 편심압출가공에 대하여 상계굽힘해석과 DEFORMTM-3D에 의한 굽힘해 석 비교)

  • 김진훈;김한봉;진인태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.45-48
    • /
    • 1997
  • The kinematically admissible velocity field is developed for the eccentric extrusion of circular shaped products. The curving of product in extrusion is caused by the difference of the linearly distributed longitudinal velocity on the cross-section of the workpiece at the dies exit. The results of the eccentric extrusion by upper bound analysis show that the curvature of product increases with the increase in eccentricity of gravity center of the cross-section of workpiece at dies entrance from that of the corss-section at the dies exit end. By the DEFORMTM-3D analysis, the curving of circular shaped product in extrusion is changed by the eccentricity, die land length and the die length. The result of the analysis by DEFORMTM-3D software shows that the curvature of circular shaped product increases with the eccentricity. The two analysis and one experiment show the curving phenomenon in eccentric extrusion process.

  • PDF

Transformer-based reranking for improving Korean morphological analysis systems

  • Jihee Ryu;Soojong Lim;Oh-Woog Kwon;Seung-Hoon Na
    • ETRI Journal
    • /
    • v.46 no.1
    • /
    • pp.137-153
    • /
    • 2024
  • This study introduces a new approach in Korean morphological analysis combining dictionary-based techniques with Transformer-based deep learning models. The key innovation is the use of a BERT-based reranking system, significantly enhancing the accuracy of traditional morphological analysis. The method generates multiple suboptimal paths, then employs BERT models for reranking, leveraging their advanced language comprehension. Results show remarkable performance improvements, with the first-stage reranking achieving over 20% improvement in error reduction rate compared with existing models. The second stage, using another BERT variant, further increases this improvement to over 30%. This indicates a significant leap in accuracy, validating the effectiveness of merging dictionary-based analysis with contemporary deep learning. The study suggests future exploration in refined integrations of dictionary and deep learning methods as well as using probabilistic models for enhanced morphological analysis. This hybrid approach sets a new benchmark in the field and offers insights for similar challenges in language processing applications.

Nonhomogeneous atherosclerotic plaque analysis via enhanced 1D structural models

  • Varello, Alberto;Carrera, Erasmo
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.659-683
    • /
    • 2014
  • The static analysis of structures with arbitrary cross-section geometry and material lamination via a refined one-dimensional (1D) approach is presented in this paper. Higher-order 1D models with a variable order of expansion for the displacement field are developed on the basis of Carrera Unified Formulation (CUF). Classical Euler-Bernoulli and Timoshenko beam theories are obtained as particular cases of the first-order model. Numerical results of displacement, strain and stress are provided by using the finite element method (FEM) along the longitudinal direction for different configurations in excellent agreement with three-dimensional (3D) finite element solutions. In particular, a layered thin-walled cylinder is considered as first assessment with a laminated conventional cross-section. An atherosclerotic plaque is introduced as a typical structure with arbitrary cross-section geometry and studied for both the homogeneous and nonhomogeneous material cases through the 1D variable kinematic models. The analyses highlight limitations of classical beam theories and the importance of higher-order terms in accurately detecting in-plane cross-section deformation without introducing additional numerical problems. Comparisons with 3D finite element solutions prove that 1D CUF provides remarkable three-dimensional accuracy in the analysis of even short and nonhomogeneous structures with arbitrary geometry through a significant reduction in computational cost.

Experimental and analytical performance evaluation of steel beam to concrete-encased composite column with unsymmetrical steel section joints

  • Xiao, Yunfeng;Zeng, Lei;Cui, Zhenkun;Jin, Siqian;Chen, Yiguang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.17-29
    • /
    • 2017
  • The seismic performance of steel beam to concrete-encased composite column with unsymmetrical steel section joints is investigated and reported within this paper. Experimental and analytical evaluation were conducted on a total of 8 specimens with T-shaped and L-shaped steel section under lateral cyclic loading and axial compression. The test parameters included concrete strength, stirrup ratio and axial compression ratio. The response of the specimens was presented in terms of their hysterisis loop behavior, stress distribution, joint shear strength, and performance degradation. The experiment indicated good structural behavior and good seismic performance. In addition, a three-dimensional nonlinear finite-element analysis simulating was conducted to simulate their seismic behaviors. The finite-element analysis incorporated both bond-slip relationship and crack interface interaction between steel and concrete. The results were also compared with the test data, and the analytical prediction of joint shear strength was satisfactory for both joints with T-shaped and L-shaped steel section columns. The steel beam to concrete-encased composite column with unsymmetrical steel section joints can develop stable hysteretic response and large energy absorption capacity by providing enough stirrups and decreased spacing of transverse ties in column.

Near-field Sonar Cross Section Analysis of Underwater Target Using Spherical Projection Method (구면투영법을 이용한 수중표적의 근거리장 소나단면적 해석)

  • Kim, Kook-Hyun;Cho, Dae-Seung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.6
    • /
    • pp.695-702
    • /
    • 2008
  • In this paper, a new numerical method is proposed to analyze near-field sonar cross section of acoustically large-sized underwater targets such as submarines. A near-field problem is converted to a far-field problem using a spherical projection method with respect to the objective target. Then, sonar cross section is calculated with a physical optics well established in far-field acoustic wave scattering problems. The analysis results of a square flat plate compared with those obtained by other method show the accuracy of the proposed method. Moreover, it is noted that the sonar cross section is varied with respect to the targeting point as well as the range. Finally, numerical analysis results of real-like underwater target such as a submarine pressure hull are discussed.