• Title/Summary/Keyword: Anaerobiospirillum succiniciproducens

Search Result 8, Processing Time 0.022 seconds

Cell Recycled Culture of Succinic Acid-Producing Anaerobiospirillum succiniciproducens Using an Internal Membrane Filtration System

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.7
    • /
    • pp.1252-1256
    • /
    • 2008
  • Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens was anaerobically carried out using an internal membrane filter module in order to examine the physiological response of A. succiniciproducens to a high-cell-density environment. The optimal growth of A. succiniciproducens and its enhanced succinic acid productivity were observed under $CO_2$-rich conditions, established by adding $NaHCO_3$ and $Na_2CO_3$, in the cell recycled system. A. succiniciproducens grew up to 6.50 g-DCW/l, the highest cell concentration obtained so far, in cell recycled cultures. The cells did not change their morphology, which is known to be easily changed in unfavorable or stress environments. The maximum productivity of succinic acid was about 3.3 g/l/h, which is 3.3 times higher than those obtained in batch cultures. These results can serve as a guide for designing highly efficient cell recycled systems for succinic acid at a commercial level.

Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chan, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1792-1796
    • /
    • 2008
  • Succinic acid-producing Anaerobinspirillum succiniciproducens was anaerobically grown on galactose, galactose/glucose, or galactose/lactose in order to study its galactose fermentation. Unlike a previous report, A. succiniciproducens was found to efficiently metabolize galactose as the sole carbon source at a rate of 2.4 g/g-DCW/h and produced succinic acid with as high a yield of 87% as with using glucose. When glucose and galactose were present, A. succiniciproducens metabolized both sugars simultaneously. Furthermore, when lactose and galactose coexisted, lactose did not inhibit the galactose fermentation of A. succiniciproducens. Therefore, co-utilization of galactose and other sugars can improve the productivity and economy of bio-based succinic acid processes.

Fermentative Production of Succinic Acid from Glucose and Corn Steep Liquor by Anaerobiospirillum succiniciproducens

  • Lee, Pyung-Cheon;Lee, Woo-Gi;Lee, Sang-Yup;Chang, Ho-Nam;Chang, Yong-Keun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.379-381
    • /
    • 2000
  • Anaerobiospirillum succiniciproducens requires expensive complex nitrogen sources such as yeast extract and polypeptone for its growth and succinic acid production. It was found that A. succiniciproducens was able to grow in a minimal medium containing glucose when supplemented with corn steep liquor (CSL) as the sole complex nitrogen source. The concentration of CSL had a significant effect on the glucose consumption by A. succiniciproducent. When 10-15 g/L of CSL was supplemented, cells were grown to an OD(sub)600 of 3.5 and produced 17.8 g/L succinic acid with 20 g/L glucose. These results are similar to those obtained by supplementing yeast extract and polypeptone, thereby suggesting that succinic acid can be produced more economically using glucose and CSL.

  • PDF

Continuous high cell density culture of Anaerobiospirillum succiniciproducens with membrane filtration for the production of succinic acid

  • Lee, Pyeong-Cheon;Lee, U-Gi;Lee, Sang-Yeop;Jang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.338-341
    • /
    • 2000
  • An internal membrane bioreactor system was employed for continuous succinic ac id production from glucose in order to prove its performance and practicality. Succinic acid-producing Anaerobiospirillum succiniciproducens required more $CO_2$ for the proper growth and succinic acid production in cell recycled continuous culture than in batch culture. The maximum productivity obtained in cell recycled continuous culture was about 3.3 g/L-h which was ca. 3.3 times higher than that obtained in batch culture.

  • PDF

Kinetic Study of Organic Acid Formations and Growth of Anaerobiospirillum succiniciproducens During Continuous Cultures

  • Lee, Pyung-Cheon;Lee, Sang-Yup;Chang, Ho-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1379-1384
    • /
    • 2009
  • Succinic acid-producing Anaerohiospirillum succinkiproducens was anaerobically grown in glucose-fed continuous cultures using glucose as a carbon source, and the metabolic flexibility of A. succiniciproducens in response to varying glucose concentrations and dilution rates was examined Both succinic acid (SA) and acetic acid (AA) formation was growth-associated, and their growth-rate-related coefficients ($K_{SA/X}$, $K_{AA/X}$) and nongrowth-rate-related coefficients ($K'_{SA/X}$, $K'_{AA/X}$) were slightly influenced by glucose concentrations. A high glucose concentration (38 g/l) and high growth rate ($0.63\;h^{-1}$) did not induce by-product formation.

Modulation of Phosphoenolpyruvate Metabolism of Anaerobiospirillum succiniciproducens ATCC 29305

  • Yoo, Jin Young;J. Gregory Zeikus
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 1996
  • Modulation of the catabolic PEP-pathway of Anaerobiospirillum succiniciproducens was tried using some enzymatic inhibitors such as gases and chemicals in order to enhance succinic acid production. 10$\%$ CO increased the succinic acid/acetic acid (S/A) ratio but inhibited growth as well as production of succinic and acetic acid. Hydrogen gas also increased the S/A ratio and inhibited the synthesis of pyruvate: ferredoxin oxidoreductase when used in mixture with $CO_2$, Catabolic repression by acetic, lactic and formic acid was not recognized and other modulators such as glyoxylate, pyruvate derivatives, arsenic salt, phosphate and sulfate were shown not to be effective. Magesium carbonate was shown effective for repressing acetate production. Palmitic acid, myristic acid and phenylalanine did not affect acetate production but carprylic acid completely inhibited growth.

  • PDF

Biological conversion of biomass to succinic acid

  • Lee, Pyeong-Cheon;Lee, U-Gi;Lee, Sang-Yeop;Jang, Yong-Geun;Jang, Ho-Nam
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.227-230
    • /
    • 2000
  • Batch cultivations of Anaerobiospirillum succiniciproducens have been systematically studied for the economical production of succinic acid from wood hydrolysate with corn steep liquor(CSL) as a nitrogen source. CSL was found to be an alternative complex nitrogen source for A. succiniciproducens when glucose and wood hydrolysate were used as carbon sources. Compared with polypeptone and/or yeast extract, CSL had similar effects on fermentation performance such as succinic acid yield and a ratio of succinic acid to acetic acid in the fermentation of wood hydrolysate as well as glucose. This means that succinic acid can be produced more economically from wood hydrolysate and CSL than relatively expensive carbon and nitrogen sources. Besides its low cost, the alternative medium served as a green technology for succinic acid production because it gives a net-zero effect on global warming.

  • PDF

Effect of pH on Organic Acid Production by Anaerobiospirillum succiniciproducens (Anaerobiospirillum succiniciproducens에 의한 유기산 생성에 미치는 pH의 영향)

  • 강귀현;류화원장호남
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.568-574
    • /
    • 1995
  • To investigate the effect of pH on organic acid production by Anaerobiospirillum succiniciproducens, an anaerobic fermentation was carried out by maintaining the pH of the fermentation broth at 5.8, 6.0, 6.4, 6.8, and 7.2. At various pHs, the concentrations of cell were $1.0∼1.9g/\ell$ which were two to three times higher than those of the other worker's results, and the maximum was obtained at pH 5.8. Substrate consumption was increased by increasing the pH in the range of pH 6.0 to 6.8, while the sugar consumption rate at both pH 5.8 and 7.2 was very slow. The total amount of 2M $Na_2C0_3$ added for adjustment of pH change due to organic acid production was maximum at pH 6.8. Changes of conductivity of the fermentation broth was very simillar to those of 2M $Na_2C0_3$ added at various pHs. Therefore, it is suggested that determination of the amount of organic acid in a broth can be possible by measuring the conductivity. The maximum production yield of lactate based on glucose was 64% for pH 7.2 and 32% for pH 6.8, respectively.

  • PDF