Browse > Article
http://dx.doi.org/10.4014/jmb.0800.129

Succinic Acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 Growing on Galactose, Galactose/Glucose, and Galactose/Lactose  

Lee, Pyung-Cheon (Department of Molecular Science and Technology and Department of Biotechnology, Ajou University)
Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Chan, Ho-Nam (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.11, 2008 , pp. 1792-1796 More about this Journal
Abstract
Succinic acid-producing Anaerobinspirillum succiniciproducens was anaerobically grown on galactose, galactose/glucose, or galactose/lactose in order to study its galactose fermentation. Unlike a previous report, A. succiniciproducens was found to efficiently metabolize galactose as the sole carbon source at a rate of 2.4 g/g-DCW/h and produced succinic acid with as high a yield of 87% as with using glucose. When glucose and galactose were present, A. succiniciproducens metabolized both sugars simultaneously. Furthermore, when lactose and galactose coexisted, lactose did not inhibit the galactose fermentation of A. succiniciproducens. Therefore, co-utilization of galactose and other sugars can improve the productivity and economy of bio-based succinic acid processes.
Keywords
Anaerobiospirillum succiniciproducens; succinic acid; galactose; mixed sugar fermentation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Ceron Garcia, M. C., F. G. Camacho, A. S. Miron, J. M. F. Sevilla, Y. Chisti, and E. M. Grima. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol. 16: 689-694   과학기술학회마을
2 Hickey, M. W., A. J. Hillier, and G. R. Jago. 1986. Transport and metabolism of lactose, glucose, and galactose in homofermentative Lactobacilli. Appl. Environ. Microbiol. 51: 825-831
3 Lee, P. C., S. Y. Lee, and H. N. Chang. 2008. Cell recycled culture of succinic acid-producing Anaerobiospirillum succiniciproducens using an internal membrane filtration system. J. Microbiol. Biotechnol. 18: 1252-1256   과학기술학회마을
4 Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang. 1999. Succinic acid production by Anaerobiospirillum succiniciproducens: Effects of the $H_2/CO_2$ supply and glucose concentration. Enzyme Microb. Technol. 24: 549-554   DOI   ScienceOn
5 Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 1999. Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochem. 35: 49-55   DOI
6 Lynd, L. R., C. E. Wyman, and T. U. Gerngross. 1999. Biocommodity engineering. Biotechnol. Prog. 15: 777-793   DOI   ScienceOn
7 Olsson, L. and J. Nielsen. 2000. The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: Utilization of industrial media. Enzyme Microb. Technol. 26: 785-792   DOI   ScienceOn
8 Samuelov, N. S., R. Lamed, S. Lowe, and J. G. Zeikus. 1991. Influence of $CO_2-HCO_3^-$ - levels and pH on growth, succinate production, and enzyme-activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57: 3013-3019
9 Thakker, C., S. Bhosale, and D. Ranade. 2006. Formation of succinic acid by Klebsiella pneumoniae MCM B-325 under aerobic and anaerobic conditions. J. Microbiol. Biotechnol. 16: 870-879   과학기술학회마을
10 Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668   DOI   ScienceOn
11 Lee, P. C., S. Y. Lee, S. H. Hong, H. N. Chang, and S. C. Park. 2003. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111-114   DOI   ScienceOn
12 Burgos-Rubio, C. N., M. R. Okos, and P. C. Wankat. 2000. Kinetic study of the conversion of different substrates to lactic acid using Lactobacillus bulgaricus. Biotechnol. Prog. 16: 305-314   DOI   ScienceOn
13 Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206: 297-313   DOI   ScienceOn
14 Baek, C. H., K. E. Lee, D. K. Park, S. H. Choi, and K. S. Kim. 2007. Genetic analysis of spontaneous lactose-utilizing mutants from Vibrio vulnificus. J. Microbiol. Biotechnol. 17: 2046-2055   과학기술학회마을
15 Landucci, R., B. Goodman, and C. Wyman. 1994. Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl. Biochem. Biotechnol. 45-6: 677-696
16 Kim, T. Y., H. U. Kim, J. M. Park, H. Song, J. S. Kim, and S. Y. Lee. 2007. Genome-scale analysis of Mannheimia succiniciproducens metabolism. Biotechnol. Bioeng. 97: 657-671   DOI   ScienceOn
17 Miller, J. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, New York
18 Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552   DOI   ScienceOn
19 Wong, T. Y., H. Pei, K. Bancroft, and G. W. Childers. 1995. Diauxic growth of Azotobacter vinelandii on galactose and glucose - regulation of glucose transport by another hexose. Appl. Environ. Microbiol. 61: 430-433
20 Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, C. H. Kim, H. Jeong, C. G. Hur, and J. J. Kim. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281   DOI   ScienceOn
21 Lee, P. C., W. G. Lee, S. Y. Lee, and H. N. Chang. 2001. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72: 41-48   DOI   ScienceOn
22 Benthin, S., J. Nielsen, and J. Villadsen. 1994. Galactose expulsion during lactose metabolism in Lactococcus lactis subsp. cremoris Fd1 due to dephosphorylation of intracellular galactose 6-phosphate. Appl. Environ. Microbiol. 60: 1254-1259
23 Lee, P. C., W. G. Lee, S. Kwon, S. Y. Lee, and H. N. Chang. 2000. Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl. Microbiol. Biotechnol. 54: 23-27   DOI   ScienceOn
24 Gokarn, R. R., M. A. Eiteman, and J. Sridhar. 1997. Production of succinate by anaerobic microorganisms. ACS Symp. Ser. 666: 237-26
25 Davis, C. P., D. Cleven, J. Brown, and E. Balish. 1976. Anaerobiospirillum, a new genus of spiral-shaped bacteria. Int. J. Syst. Bacteriol. 26: 498-504   DOI
26 Guzman, S., I. Ramos, E. Moreno, B. Ruiz, R. Rodriguez-Sanoja, L. Escalante, E. Langley, and S. Sanchez. 2005. Sugar uptake and sensitivity to carbon catabolite regulation in Streptomyces peucetius var. caesius. Appl. Microbiol. Biotechnol. 69: 200-206   DOI   ScienceOn
27 Park, J. Y., S. J. Jeong, A. R. Lee, J. Park, W. J. Jeong, and J. H. Kim. 2007. Expression of alpha-galactosidase gene from Leuconostoc mesenteroides SY1 in Leuconostoc citreum. J. Microbiol. Biotechnol. 17: 2081-2084   과학기술학회마을
28 Luesink, E. J., R. van Herpen, B. P. Grossiord, O. P. Kuipers, and W. M. de Vos. 1998. Transcriptional activation of the glycolytic las operon and catabolite repression of the gal operon in Lactococcus lactis are mediated by the catabolite control protein CcpA. Mol. Microbiol. 30: 789-798   DOI   ScienceOn
29 Ostergaard, S., L. Olsson, M. Johnston, and J. Nielsen. 2000. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat. Biotechnol. 18: 1283-1286   DOI   ScienceOn
30 Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216   DOI   ScienceOn
31 McKinlay, J. B., C. Vieille, and J. G. Zeikus. 2007. Prospects for a bio-based succinate industry. Appl. Microbiol. Biotechnol. 76: 727-740   DOI   ScienceOn