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Succinic acid-producing Anaerobiospirillum succiniciproducens
was anaerobically grown in glucose-fed continuous cultures
using glucose as a carbon source, and the metabolic
flexibility of A. succiniciproducens in response to varying
glucose concentrations and dilution rates was examined.
Both succinic acid (SA) and acetic acid (AA) formation was
growth-associated, and their growth-rate-related coefficients
(Ksax» Ksax) and nongrowth-rate-related coefficients (K’
K’,ax) were slightly influenced by glucose concentrations.
A high glucose concentration (38 g/) and high growth rate
(0.63 h™) did not induce by-product formation.
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Succinic acid is a dicarboxylic acid produced as an
intermediate of the tricarboxylic acid cycle and also as one
of the fermentation products of anaerobic metabolism [27].
Succinic acid has recently emerged as an important chemical
because it can be used for the manufacturing of synthetic
resins and biodegradable polymers and as an intermediate
for the synthesis of various chemicals [17]. To date, most
succinic acid has been produced by chemical processes that
use fossil resources. However, owing to the environmental
benefits and increasing concerns of petroleum shortages,
fermentative production of succinic acid from a renewable
biomass by anaerobic bacteria has attracted great interest
[6, 17]. Among the succinic acid-producing microorganisms,
which include Anaerobiospirillum succiniciproducens [1,
23], Actinobacillus succinogenes [2,16], Mannheimia
succiniciproducens 9, 15, Corynebacterium glutamicum
[20], and Escherichia coli [24], the strict anaerobic bacterium
A. succiniciproducens has been considered one of the most
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attractive succinic acid producers because it is able to utilize
several renewable resources such as whey (lactose) [11],
glycerol [14], wood hydrolysates [10], and galactose [§].
Therefore, batch and fed-batch cultures of 4. succiniciproducens
have been carried out to better understand the environmental
and physiological responses of the cell [12, 13, 19, 23].

Although a fundamental knowledge of this bacterium
when produced by batch culture is of value, it is not
sufficient and provides a rather limited understanding of
succinic acid formation and cell growth. Continuous cultivation
is a preferred system for biocommodity chemical production
and kinetic studies [18, 25]. During continuous fermentation
of glucose by A. succiniciproducens, succinic and lactic
acids formation was found to strongly depend on the level
of CO, [23]. Recently, internal and external membrane cell
recycle systems using A. succiniciproducens were reported
and physiological and metabolic changes under high-
cell density conditions were described [7, 18]. However,
information on steady-state parameters is still limited in
regard to optimizing continuous succinic acid production
using A. succiniciproducens. Furthermore, the formation
of acetic acid as a by-product needs to be examined as
well, because it affects the process of separating succinic
acid from culture media [12].

The aim of this study was to establish a better understanding
of the cell growth kinetics and succinic and acetic acids
formation of A. succiniciproducens during continuous
culture and to determine the optimal operation conditions
for the continuous production of succinic acid with minimal
formation of acetic acid as a by-product. Anaerobiospirillum
succiniciproducens (ATCC 29305) was obtained from the
American Type Culture Collection (Rockville, MD, U.S.A.).
Cells were grown in sealed anaerobic bottles containing
100 ml of minimal salts medium! (AnS1), 10 g/l glucose,
2.5 g/l yeast extract, and 2.5 g/l polypeptone with CO, as
the gas phase. The AnS1 medium contained per liter: 3 g
K,HPO,, 1 gNaCl, 1 g NH,),SO,, 0.2 g CaCl,-2H,0,02 g
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MgCl,6H,0, and 1 g Na,CO;. The medium was heat sterilized
(15 min at 121°C) in an anaerobic bottle with a nitrogen
headspace. The pH of the sterile media was adjusted to
pH 6.5 by the addition of concentrated H,SO,. The nitrogen
headspace was replaced by CO,, and Na,S:‘9H,0 was
added to a final concentration of 1 mg/l to establish strict
anaerobic conditions. After 15 min, the reduced medium
was inoculated with 2.5 ml of glycerol stock culture and
incubated at 39°C for 12~13 h.

Continuous cultures were carried out at 39°C in a jar
bioreactor (2.5 1; Korea Fermenter Company, Incheon, Korea)
containing 400 ml of minimal salts medium2 (AnS2), 19
or 38 g glucose, 2.5 or 5 g yeast extract, and 5 or 10 g
polypeptone. The AnS2 medium contained per liter: 3 g
K,HPO,, 2 gNaCl, 5 g (NH,),SO,, 0.2 g CaCl,2H,0, 0.4 g
MgCl,-6H,0, 5 mg FeSO,7H,0, and 3 g Na,CO,. The pH
was maintained of 6.5 using 1.5M Na,CO,. Feeding
solutions were purged with oxygen-free CO, gas for 24 h
in order to establish anaerobic conditions before use.
When the residual glucose concentration dropped to 2 g/l
during the batch operations, a reduced feeding solution
containing glucose was added at different dilution rates
while an equal volume of spent medium was removed
from the bioreactor. The new steady states were confirmed
by the constant concentrations of cells, glucose, and end-
products in the bioreactor for three consecutive samples
taken at 6- or 8-h intervals after at least 5 turnovers.
Foaming was controlled by the addition of Antifoam 289
(Sigma Chemical Co., St. Louis, MO, U.S.A.). CO, gas
sparging rate and agitation speed were maintained at
0.25 vvm and 200 rpm, respectively. All chemicals used
were of reagent grade and were obtained from either Junsei
Chemical Co. (Tokyo, Japan) or Sigma Chemical Co. Gas
was scrubbed free of oxygen by passing through a gas

purifier (PJ. Cobert Associates, Inc., St. Louis, MO,
U.S.A.). The concentrations of glucose, succinic acid, and
acetic acid were measured by high-performance liquid
chromatography (Hitachi L-3300 RI monitor, 1.-4200 UV-
VIS detector, D2500 chromato-integrator; Tokyo, Japan)
equipped with an ion-exchange column (Aminex HPX-
87H, 300 mmx7.8 mm; Hercules, CA, U.S.A.)and 0.012 N
H,SO, was used as the mobile phase. Cell growth was
monitored by measuring the absorbance at 660 nm (ODy,)
using a spectrophotometer (Ultrospec3000; Pharmacia
Biotech, Sweden). Dry cell weight (DCW) was calculated
from a curve relating the OD, to DCW: an ODg, of 1.0
represented 0.33 g DCW per liter. The theoretical maximum
biomass yield, cell maintenance coefficient, and specific
glucose uptake rate were determined according to a
previously developed method [22]. Yields of succinic and
acetic acids were defined as the amount of succinic and
acetic acids produced from one gram of glucose consumed.
Similarly, biomass yield was defined as the amount of
biomass produced from one gram of glucose consumed.
Carbon recovery calculations were carried out to verify
data consistency at each steady state obtained during the
continuous cultures. In these calculations, cell carbon was
calculated with CH,0,N,,; [23] and succinic acid was
assumed to have 3 mol carbon/mol product [succinate —
(CO,)] due to the relationship between CO, fixation and
succinic acid formation during fermentation [26]. The
yield and carbon recovery calculations were corrected by
base dilution factors (ca. 8%—10%) due to the addition of
1.5 M Na,CO, for pH control during cultivation.
Anaerobic continuous cultures were carried out at various
dilution rates in complex mediums containing 19 or 38 g/l
of glucose. These concentrations were chosen because
they showed better performance in terms of cell growth

Table 1. Steady-state parameters and yields during anaerobic single-stage continuous fermentation of 19 g/l glucose by A.

succiniciproducens at various dilution rates®.

D (h™) X (g S (g/) SA (/D) AA (D) Yus(ge)  Yas(et)  Yaas(®®) CR
0.056 0.96 0 15.0 3.8 0.068 0.88 0.22 0.95
0.10 1.06 0 14.7 3.8 0.081 0.87 0.22 0.94
0.18 1.30 0 14.7 3.8 0.082 0.87 0.22 0.95
0.22 135 0 14.1 3.9 0.088 0.84 0.23 0.94
0.27 1.45 2.1 13.7 39 0.089 0.86 0.25 0.98
0.29 1.42 2.6 13.1 3.9 0.091 0.85 0.25 1.01
0.31 1.49 3.1 12.2 3.8 0.11 0.84 0.25 0.97
0.36 1.47 34 11.7 3.6 0.11 0.83 0.25 0.95
043 1.47 3.8 113 33 0.11 0.86 0.25 0.94
0.52 1.49 6.4 10.2 3.0 0.068 0.85 0.25 1.02
0.58 1.45 6.7 9.7 2.8 0.081 0.87 0.25 1.00
0.63 1.27 8.9 8.3 2.3 0.082 0.86 0.24 1.05

* Initial glucose concentration in the feed, 19 g/I; pH 6.5.

D, dilution rate; X, cell concentration; S, glucose; SA, succinic acid; AA, acetic acid; Yy, biomass yield; Yg,s succinic acid yield;

Yaass acetic acid yield; CR, carbon recovery.
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Table 2. Steady-state parameters and yields during anaerobic single-stage continuous fermentation of 38 g/l glucose by A.

succiniciproducens at various dilution rates’.

D (™)

X (g S (g SA (g/D AA (gD Ys (2/2)  Yaas(@®)  Yaus(g/g) CR
0.032 1.38 0.2 29.6 7.5 0.042 0.87 0.22 0.93
0.064 1.60 47 26.5 6.8 0.054 0.90 0.23 0.99
0.11 132 12 19.5 5.1 0.059 0.88 0.23 0.95
0.15 1.29 13.5 18.5 4.8 0.062 0.89 0.23 0.93
0.22 1.16 14 18.1 4.8 0.057 0.90 0.24 0.95
0.41 1.1 16.3 15.9 3.9 0.061 0.89 0.22 0.98
0.54 0.79 25.8 9.2 2.3 0.065 0.86 0.22 1.0

*Initial glucose concentration in the feed, 38 g/l glucose; pH 6.5.

D, dilution rate; X, cell concentration; S, glucose: SA, suceinic acid; AA, acetic acid; Yy, biomass yield; Y, succinic acid yield;

Yanss acetic acid yield; CR, carbon recovery.

and succinic acid formation of A. succiniciproducens
during batch cultures [12]. When 19 g/1 of glucose was in
the feed media (Table 1), the steady-state cell concentration
was nearly constant (1.46+0.02 g-DCW/) at dilution rates
(D) between 0.27 and 0.58 h™'. However, the cell concentrations
were lower at low (<0.22 h™") and high (>0.58 h™) D. At
higher D=0.22h™', glucose started to accumulate and
reached a concentration of 8.9 g/l at D=0.64 h™'. Accordingly,
the steady state-concentration of succinic acid and acetic
acid decreased from 15 to 8.3 g/l and from 3.8 to 2.3 g/1,
respectively, with increasing D. Cell yield (Yy,) increased
from 0.068 to 0.11 g-DCW/g-glucose when D increased
from 0.056 to 0.43h™', and thereafter, it decreased to
0.082 g-DCW/g-glucose at D=0.64h™". Succinic acid
yields (Ygus) Were maintained at 0.86+0.02 g-succinic
acid/g-glucose, and acetic acid yields (Y,) remained at
0.24+0.02 g-acetic acid/g-glucose. The gram ratio of Yy,
o Yars Was in good agreement with the values previously
obtained in batch cultures [12].

A

When 38 g/l of glucose was used in the feed (Table 2), the
cell concentration decreased with increasing D. Consequently,
glucose was incompletely consumed at even low D, and it
continued to accumulate with increasing D. The steady-
state concentration of succinic acid and acetic acid decreased
from 27.6 to 9.2 g/l and from 7.5 to 2.3 g/l, respectively,
with increasing D. Yy was much lower than the value
obtained when 19 g/l of glucose was used in the feed:
0.042-0.065 g-DCW/g-glucose vs. 0.068—0.11 g-DCW/
g-glucose. Higher Y, (0.88-0.90 g-succinic acid/g-glucose)
and lower Y, (0.23-0.24 g-acetic acid/g-glucose) were
observed.

The correlation between the specific rate of succinic
acid production (qs,) and specific growth rate (1 or D) was
examined. As shown in Fig. 1A, succinic acid formation
was clearly associated with D and significantly affected by
glucose concentration in the feed medium. The growth-
rate-related coefficient (Kg,x) for succinic acid formation
at 19 g/l and 38 g/l of glucose was 5.1 g-succinic acid/g-
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Fig. 1. Representation of the specific rate of succinic acid production (A), acetic acid production (B), and glucose consumption (C)
versus the dilution rate used during an anacrobic continuous fermentation of glucose by A. succiniciproducens.

Open symbols are 19 g/l glucose and close symbols are 38 g/l glucose.
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DCW (from the equation g5,=0.99+5.1D) and 11.6 g-
succinic acid/g-DCW (from the equation qg,=0.45+11.6D),
respectively. The nongrowth-rate-related coefficient (K’g, x)
for succinic acid formation at 19 g/l and 38 g/l of glucose
was 0.99 g-succinic acid/g-DCW and 0.45 g-succinic acid/
g-DCW, respectively. The value of Kgs /K g x at 38 g/l of
glucose was 5 times higher than the value at 19 g/l of
glucose, indicating that succinic acid production was
favored at higher glucose concentration.

Next, the correlation between the specific rate of acetic
acid production as a by-product (q,,), which is also a
growth-associated product, and D was examined (Fig. 1B).
The growth-rate-related coefficient (K,,5) for acetic acid
formation at 19 g/l and 38 g/l of glucose was 1.48 g-acetic
acid/g-DCW (from the equation q,,=0.30+1.48D) and
2.97 g-acetic acid/g-DCW (from the equation g,,= 0.12+
2.97D), respectively. The nongrowth-rate-related coefficient
(K’aax) at 19 g/l and 38 g/1 of glucose was 0.30 g/g-DCW
and 0.12 g/g-DCW, respectively. The value of K, i /K’ 40 %
at 38 g/l of glucose was 5 times higher than the value at
19 g/l of glucose, indicating that acetic acid production
was also favored at higher glucose concentration. The
value of Ky, x/Kaax Was 3.5 at 19 g/l of glucose and 3.9 at
38 g/l of glucose, respectively, whereas the value of K’g, 5/
K’aax was 1.5 and 8.25 at 19 g/l and 38 g/l of glucose,
respectively.

Fig. 1C shows the correlation between the specific rate
of glucose consumption (qs) and D. From this relationship,
the maximum theoretical biomass yields can be calculated
using the equation q=f(D). The maximum theoretical
biomass yields were calculated to be 0.159 g-DCW/g-
glucose (=1/6.3) and 0.066 g-DCW/g-glucose (=1/15.1) at
19 g/l and 38 g/l of glucose, respectively. Cell maintenance
coefficients [intercept of the lines qg=f(D)] were 1.36 g/g/h
at 19 g/l of glucose and 0.59 g/g/h at 38 g I! of glucose.
Because succinic acid was a growth-associated product, as
mentioned above, the volumetric productivity of succinic
acid increased with increasing D. The maximum productivities
of succinic acid obtained were 5.5 g/l/h (0.58h™) and
6.1 g/Vh (0.41 h™") at 19 g/l and 38 g/l of glucose, respectively
(Fig. 2).

During anaerobic continuous culture of 4. succiniciproducens
in glucose-fed media, the steady-state kinetic parameters
and yields were significantly influenced by glucose levels
in the feed medium and specific growth rates or dilution
rates. As expected [11], production of both succinic acid
and acetic acid was found to be growth-associated and
their growth- and nongrowth-rate-related coefficients were
also slightly influenced by the glucose concentration in the
feed media. The growth-rate-related coefficient for succinic
acid (Kgux=11.6) at 38 g/l of glucose was 2.2 times higher
than that (K¢, x=5.1) at 19 g/l of glucose. Similarly, the
growth-rate-related coefficient for acetic acid (K, x=
2.97) at 38 g/l of glucose was twice higher than the value

Volumetric productivity of succinic acid (g/I/h)

O T T T T T T
0.0 0.1 0.2 0.3 04 05 06 0.7

D (h™

Fig. 2. Succinic acid volumetric productivity versus dilution rate
during anaerobic continuous fermentation of glucose by A.
succiniciproducens.

Symbols are 19 g/l glucose (4 ) and 38 g/l glucose (2).

(Kaax=1.48) at 19 g/l of glucose. Interestingly, a high
glucose concentration and high growth rate (=D) did not
induce the formation of by-products, which has been
observed for Saccharomyces (ethanol) [4] and Escherichia
coli (formic acid) [5]. This result is in good agreement
with previous studies that have used batch cultures [12].
These combined results suggest that A. succiniciproducens
efficiently controls the overflow of carbon flux towards
succinic and acetic acids production without additional by-
products formation.

In contrast to the increase in Kg,x and K,,x with
increasing glucose concentration in the feed medium, the
biomass yields (Yy,) were shown to decrease with increasing
glucose concentration (Tables 1 and 2). This decrease in
biomass yield may be attributed to the increasing osmolarity
[3] of the media and accumulation of succinic acid and
acetic acid [13]. The calculated maximum biomass yields
and cell maintenance coefficients of A. succiniciproducens
were relatively lower than those of other anaerobic bacteria
[21].

In many anaerobic fermentation processes for organic
acid or alcohol production, the product yield is the key
factor affecting the total cost of the process. Although the
succinic acid and acetic acid yields were slightly affected
by glucose concentration and the specific growth rate
(Tables 1 and 2), the succinic acid/acetic acid mass ratio
over a range of D’s was similar to values obtained using
batch fermentation of carbohydrates [12, 13]. The Kg,x/
Kaax (53.5-3.9) and K’gy /K’ sax (=3.3-3.8) values can
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explain the significant changes observed in the succinic
acid/acetic acid mass ratios during the batch cultures of 4.
succiniciproducens under different culture conditions.

In conclusion, a comparison of the kinetic parameters
and yields at different glucose concentrations shows that
the production of succinic and acetic acids is growth
associated and is enhanced by increasing the glucose
concentration in the feed medium without additional by-
product formation. The higher maintenance requirement
and lower biomass yield relative to other anaerobic bacteria
are unique to 4. succiniciproducens. Although these results
will be important in the design of novel bioprocesses for
succinic acid production by 4. succiniciproducens, further
studies will be required to increase the acid-tolerance of
this system or to reduce acetic acid formation.
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