Park, Hyun-Su;Choi, Kyoung-Hwa;Park, Young-Don;Park, Cheon-Seok;Cha, Jae-Ho
Journal of Life Science
/
v.21
no.11
/
pp.1631-1635
/
2011
The capability of synthesizing polyphenol glycosides was examined using recombinant amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis. Based on the action mode of amylosucrase, sucrose and twenty-one polyphenols were used as a donor and acceptors respectively. The transglycosylation reaction by amylosucrase produced one or two major polyphenol glycosides depending on the type of polyphenols used. The synthesized polyphenol glycosides were detected by thin-layer chromatography. The structures of the newly synthesized polyphenol glycosides were predicted based on the transglycosylation mechanism of the enzyme. According to the acceptability of the polyphenols, the structural characteristics of polyphenol as an efficient acceptor were evaluated. The results indicate that amylosucrase is an efficient catalyst for the enzymatic synthesis of polyphenol glycosides, which have high potentials in food, cosmetics, and pharmaceutical industries.
Park, Soyoon;Moon, Keumok;Park, Cheon-Seok;Jung, Dong-Hyun;Cha, Jaeho
Journal of Microbiology and Biotechnology
/
v.28
no.4
/
pp.566-570
/
2018
Because glycosylation of aesculetin and its 6-glucoside, aesculin, enhances their biological activities and physicochemical properties, whole-cell biotransformation and enzymatic synthesis methodologies using Neisseria polysaccharea amylosucrase were compared to determine the optimal production method for glycoside derivatives. High-performance liquid chromatography analysis of reaction products revealed two glycosylated products (AGG1 and AGG2) when aesculin was used as an acceptor, and three products (AG1, AG2, and AG3) when using aesculetin. The whole-cell biotransformation production yields of the major transfer products for each acceptor (AGG1 and AG1) were 85% and 25%, respectively, compared with 68% and 14% for enzymatic synthesis. These results indicate that whole-cell biotransformation is more efficient than enzymatic synthesis for the production of glycoside derivatives.
Glycosylation of resveratrol was carried out by using the amylosucrase of Deinococcus geothermalis, and the glycosylated products were tested for their solubility, chemical stability, and biological activities. We synthesized and identified these two major glycosylated products as resveratrol-4'-O-α-glucoside and resveratrol-3-O-α-glucoside by nuclear magnetic resonance analysis with a ratio of 5:1. The water solubilities of the two resveratrol-α-glucoside isomers (α-piceid isomers) were approximately 3.6 and 13.5 times higher than that of β-piceid and resveratrol, respectively, and they were also highly stable in buffered solutions. The antioxidant activity of the α-piceid isomers, examined by radical scavenging capability, showed it to be initially lower than that of resveratrol, but as time passed, the α-piceid isomers' activity reached a level similar to that of resveratrol. The α-piceid isomers also showed better inhibitory activity against tyrosinase and melanin synthesis in B16F10 melanoma cells than β-piceid. The cellular uptake of the α-piceid isomers, which was assessed by ultra-performance liquid chromatography (UPLC) analysis of the cell-free extracts of B16F10 melanoma cells, demonstrated that the glycosylated form of resveratrol was gradually converted to resveratrol inside the cells. These results indicate that the enzymatic glycosylation of resveratrol could be a useful method for enhancing the bioavailability of resveratrol.
Glycosylation of aesculetin was performed using amylosucrase from the hyperthermophilic bacterium Deinococcus geothermalis DSM 11300 to improve the solubility and biological activity of aesculetin. A newly synthesized aesculetin glycoside was identified as α-cichoriin (aesculetin 7-α-D-glucoside) by nuclear magnetic resonance analysis. The solubility of α-cichoriin was 11 times higher than that of aesculetin because of the attached glucose moiety. Aesculetin and α-cichoriin had no significant effect on the proliferation of normal cells, such as RAW 264.7, but they showed a cell proliferation inhibitory effect on B16F10 melanoma cells. Unlike treatment with aesculetin and α-cichoriin, aesculin (aesculetin 6-β-D-glucoside) showed no antiproliferative activity in B16F10 cells. Based on the molecular structures of aesculin and α-cichoriin, the position where glucose binds to aesculetin and the anomeric configuration between glucose and aesculetin are thought to be important for exerting an antiproliferative effect on the B16F10 cell line. Based on these results, we propose that α-cichoriin, the α-glycosylated form of aesculetin, may serve as a model for developing phytochemical analogs with therapeutic potential for the treatment of diseases associated with tumor cell proliferation without cytotoxicity to normal cells.
Lee, Hun Sang;Kim, Tae-Su;Parajuli, Prakash;Pandey, Ramesh Prasad;Sohng, Jae Kyung
Journal of Microbiology and Biotechnology
/
v.28
no.9
/
pp.1447-1456
/
2018
The amylosucrase encoding gene from Deinococcus geothermalis DSM 11300 (DgAS) was codon-optimized and expressed in Escherichia coli. The enzyme was employed for biosynthesis of three different dihydroxybenzene glucosides using sucrose as the source of glucose moiety. The reaction parameters, including temperature, pH, and donor (sucrose) and acceptor substrate concentrations, were optimized to increase the production yield. This study demonstrates the highest ever reported molar yield of hydroquinone glucosides 325.6 mM (88.6 g/l), resorcinol glucosides 130.2 mM (35.4 g/l) and catechol glucosides 284.4 mM (77.4 g/l) when 400 mM hydroquinone, 200 mM resorcinol and 300 mM catechol, respectively, were used as an acceptor substrate. Furthermore, the use of commercially available amyloglucosidase at the end of the transglycosylation reaction minimized the gluco-oligosaccharides, thereby enhancing the target productivity of mono-glucosides. Moreover, the immobilized DgAS on Amicogen LKZ118 beads led to a 278.4 mM (75.8 g/l), 108.8 mM (29.6 g/l) and 211.2 mM (57.5 g/l) final concentration of mono-glycosylated product of hydroquinone, catechol and resorcinol at 35 cycles, respectively, when the same substrate concentration was used as mentioned above. The percent yield of the total glycosides of hydroquinone and catechol varied from 85% to 90% during 35 cycles of reactions in an immobilized system, however, in case of resorcinol the yield was in between 65% to 70%. The immobilized DgAS enhanced the efficiency of the glycosylation reaction and is therefore considered effective for industrial application.
Seo, Dong-Ho;Jung, Jong-Hyun;Choi, Hyun-Chang;Cho, Hyun-Kuk;Kim, Hee-Hang;Ha, Suk-Jin;Yoo, Sang-Ho;Cha, Jaeho;Park, Cheon-Seok
Journal of Microbiology and Biotechnology
/
v.22
no.9
/
pp.1253-1257
/
2012
A gene (acas) designated as ${\alpha}$-amylase was cloned from Arthrobacter chlorophenolicus A6. The multiple amino acid sequence analysis and functional expression of acas revealed that this gene really encoded an amylosucrase (ASase) instead of ${\alpha}$-amylase. In fact, the recombinant enzyme exhibited typical ASase activity by showing both sucrose hydrolysis and glucosyltransferase activities. The purified enzyme has a molecular mass of 72 kDa and exhibits optimal hydrolysis activity at $45^{\circ}C$ and a pH of 8.0. The analysis of the oligomeric state of ACAS with gel permeation chromatography revealed that the ACAS existed as a monomer.
Kim, Myo-Deok;Jung, Dong-Hyun;Seo, Dong-Ho;Jung, Jong-Hyun;Seo, Ean-Jeong;Baek, Nam-In;Yoo, Sang-Ho;Park, Cheon-Seok
Journal of Microbiology and Biotechnology
/
v.26
no.11
/
pp.1845-1854
/
2016
The transglycosylation activity of amylosucrase (ASase) has received significant attention owing to its use of an inexpensive donor, sucrose, and broad acceptor specificity, including glycone and aglycone compounds. The transglycosylation reaction of recombinant ASase from Deinococcus radiopugnans (DRpAS) was investigated using various phenolic compounds, and quercetin-3-O-rutinoside (rutin) was found to be the most suitable acceptor molecule used by DRpAS. Two amino acid residues in DRpAS variants (DRpAS Q299K and DRpAS Q299R), assumed to be involved in acceptor binding, were constructed by site-directed mutagenesis. Intriguingly, DRpAS Q299K and DRpAS Q299R produced 10-fold and 4-fold higher levels of rutin transglycosylation product than did the wild-type (WT) DRpAS, respectively. According to in silico molecular docking analysis, the lysine residue at position 299 in the mutants enables rutin to more easily position inside the active pocket of the mutant enzyme than in that of the WT, due to conformational changes in loop 4.
Park, Hyunsu;Kim, Jieun;Park, Ji-Hae;Baek, Nam-In;Park, Cheon-Seok;Lee, Hee-Seob;Cha, Jaeho
Journal of Microbiology and Biotechnology
/
v.22
no.12
/
pp.1698-1704
/
2012
Resveratrol, or its glycoside form piceid, is a dietary antioxidant polyphenolic compound, found in grapes and red wine that has been shown to have protective effects against cardiovascular disease. However, very low water solubility of the compound may limit its application in the food and pharmaceutical industries. The amylosucrase (AMAS) of Alteromonas macleodii Deep ecotype was expressed in Escherichia coli and showed high glycosyltransferase activity to produce the glucosyl piceid when piceid was used as an acceptor. The conversion yield of piceid glucoside was 35.2%. Biotransformation using culture of the E. coli harboring the amas gene increased the yield up to 70.8%. The transfer product was purified by reverse phase chromatography and recycling preparative HPLC, and the molecular structure of the piceid glucoside was determined using NMR spectroscopy. The piceid glucoside was identified as glucosyl-${\alpha}$-($1{\rightarrow}4$)-piceid. The solubility of glucosyl piceid was 5.26 and 1.14 times higher than those of resveratrol and piceid, respectively. It is anticipated that dietary intake of this compound is more effective by enhancing the bioavailability of resveratrol in the human body because of its hydrophilic properties in the intestinal fluid.
Amylosucrase (ASase, E.C. 2.4.1.4) is capable of efficient glucose transfer from sucrose, acting as the sole donor molecule, to various functional acceptor compounds, such as polyphenols and flavonoids. An ASase variant from Deinococcus geothermalis, in which the 226th alanine is replaced with asparagine (DgAS-A226N), shows increased polymerization activity due to changes in the flexibility of the loop near the active site. In this study, we further investigated how the mutation modulates the enzymatic activity of DgAS using molecular dynamics and docking simulations to evaluate interactions between the enzyme and phenolic compounds. The computational analysis revealed that the A226N mutation could induce and stabilize structural changes near the substrate-binding site to increase glucose transfer efficiency to phenolic compounds. Kinetic parameters of DgAS-A226N and WT DgAS were determined with sucrose and 4-methylumbelliferone (MU) as donor and acceptor molecules, respectively. The kcat/Km value of DgAS-A226N with MU (6.352 mM-1min-1) was significantly higher than that of DgAS (5.296 mM-1min-1). The enzymatic activity was tested with a small phenolic compound, hydroquinone, and there was a 1.4-fold increase in α-arbutin production. From the results of the study, it was concluded that DgAS-A226N has improved acceptor specificity toward small phenolic compounds by way of stabilizing the active conformation of these compounds.
${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.