Browse > Article
http://dx.doi.org/10.4014/jmb.1902.02028

Enzymatic Synthesis of β-Glucosylglycerol and Its Unnatural Glycosides Via β-Glycosidase and Amylosucrase  

Jung, Dong-Hyun (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Seo, Dong-Ho (Research Group of Healthcare, Korea Food Research Institute)
Park, Ji-Hae (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University)
Kim, Myo-Jung (Department of Food and Life Science, Inje University)
Baek, Nam-In (Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University)
Park, Cheon-Seok (Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.4, 2019 , pp. 562-570 More about this Journal
Abstract
${\beta}$-Glucosylglycerol (${\beta}-GG$) and their derivatives have potential applications in food, cosmetics and the healthcare industry, including antitumor medications. In this study, ${\beta}-GG$ and its unnatural glycosides were synthesized through the transglycosylation of two enzymes, Sulfolobus shibatae ${\beta}$-glycosidase (SSG) and Deinococcus geothermalis amylosucrase (DGAS). SSG catalyzed a transglycosylation reaction with glycerol as an acceptor and cellobiose as a donor to produce 56% of ${\beta}-GGs$ [${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}2$)-$\text\tiny{D}$-glycerol]. In the second transglycosylation reaction, ${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol was used as acceptor molecules of the DGAS reaction. As a result, 61% of ${\alpha}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol and 28% of ${\alpha}$-$\text\tiny{D}$-maltopyranosyl-($1{\rightarrow}4$)-${\beta}$-$\text\tiny{D}$-glucopyranosyl-($1{\rightarrow}1/3$)-$\text\tiny{D}$-glycerol were synthesized as unnatural glucosylglycerols. In conclusion, the combined enzymatic synthesis of the unnatural glycosides of ${\beta}-GG$ was established. The synthesis of these unnatural glycosides may provide an opportunity to discover new applications in the biotechnological industry.
Keywords
Glycerol glycosides; ${\beta}$-glycosidase; amylosucrase; transglycosylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bianchi G, Gamba A, Limiroli R, Pozzi N, Elster R, Salamini F, et al. 1993. The unusual sugar composition in leaves of the resurrection plant Myrothamnus flabellifolia. Physiol. Plant. 87: 223-226.   DOI
2 Kaneda M, Mizutani K, Takahashi Y, Kurono G, Nishikawa Y. 1974. Lilioside A and B, two new glycerol glucosides isolated from Lilium longiflorum T hunb. Tetrahedron Lett. 15: 3937-3940.   DOI
3 Seo S, Tomita Y, Tori K, Yoshimura Y. 1978. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 100: 3331-3339.   DOI
4 Suhr R, Scheel O, Thiem J. 1998. Synthesis of glycosyl glycerols and related glycolipids. J. Carbohydr. Chem. 17: 937-968.   DOI
5 Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1998. Inhibitory effects of fatty acid monoesters of 2-O-${\beta}$-D-glucosylglycerol on Epstein-Barr virus activation. Cancer Lett. 123: 83-86.   DOI
6 Kaneda M, Mizutani K, Tanaka K. 1982. Lilioside C, a glycerol glucoside from Lilium lancifolium. Phytochemistry 21: 891-893.   DOI
7 Curatolo W. 1987. The physical properties of glycolipids. Biochim. Biophys. Acta-Rev. 906: 111-136.   DOI
8 Colombo D, Scala A, Taino IM, Toma L, Ronchetti F, Tokuda H, et al. 1996. 1-O-, 2-O-and 3-O-${\beta}$-glycosyl-snglycerols: Structure-anti-tumor-promoting activity relationship. Bioorg. Med. Chem. Lett. 6: 1187-1190.   DOI
9 Colombo D, Compostella F, Ronchetti F, Scala A, Toma L, Tokuda H, et al. 1999. Chemoenzymatic synthesis and antitumor promoting activity of 6'-and 3-esters of 2-O-${\beta}$-D-glucosylglycerol. Bioorg. Med. Chem. 7: 1867-1871.   DOI
10 Murakami N, Imamura H, Sakakibara J, Yamada N. 1990. Seven new monogalactosyl diacylglycerols isolated from the axenic cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 38: 3497-3499.   DOI
11 Shirahashi H, Murakami N, Watanabe M, Nagatsu A, Sakakibara J, Tokuda H, et al. 1993. Isolation and identification of anti-tumor-promoting principles from the fresh-water cyanobacterium Phormidium tenue. Chem. Pharm. Bull. 41: 1664-1666.   DOI
12 Murakami A, Nakamura Y, Koshimizu K, Ohigashi H. 1995. Glyceroglycolipids from Citrus hystrix, a traditional herb in Thailand, potently inhibit the tumor-promoting activity of 12-O-tetradecanoylphorbol 13-acetate in mouse skin. J. Agric. Food Chem. 43: 2779-2783.   DOI
13 Morimoto T, Nagatsu A, Murakami N, Sakakibara J, Tokuda H, Nishino H, et al. 1995. Anti-tumour-promoting glyceroglycolipids from the green alga, Chlorella vulgaris. Phytochemistry 40: 1433-1437.   DOI
14 Barstrom M, Bengtsson M, Blixt O, Norberg T. 2000. New derivatives of reducing oligosaccharides and their use in enzymatic reactions: efficient synthesis of sialyl Lewis a and sialyl dimeric Lewis x glycoconjugates. Carbohydr. Res. 328: 525-531.   DOI
15 Boltje TJ, Buskas T, Boons G-J. 2009. Opportunities and challenges in synthetic oligosaccharide and glycoconjugate research. Nat. Chem. 1: 611-622.   DOI
16 Marinone Albini F, Murelli C, Patritti G, Rovati M. 1994. A simple synthesis of glucosyl glycerols. Synth. Commun. 24: 1651-1661.   DOI
17 Wickberg B. 1958. Synthesis of 1-glyceritol D-galactopyranosides. Acta Chem. Scand. 12: 1187-1201.   DOI
18 Zeng X, Uzawa H. 2005. Convenient enzymatic synthesis of a p-nitrophenyl oligosaccharide series of sialyl N-acetyllactosamine, sialyl $Le^x$ and relevant compounds. Carbohydr. Res. 340: 2469-2475.   DOI
19 Bruins M, Strubel M, Van Lieshout J, Janssen A, Boom R. 2003. Oligosaccharide synthesis by the hyperthermostable ${\beta}$-glucosidase from Pyrococcus furiosus: kinetics and modelling. Enzyme Microb. Technol. 33: 3-11.   DOI
20 Henrissat B, Davies G. 1997. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 7: 637-644.   DOI
21 Park N-Y, Baek N-I, Cha J, Lee S-B, Auh J-H, Park C-S. 2005. Production of a new sucrose derivative by transglycosylation of recombinant Sulfolobus shibatae ${\beta}$-glycosidase. Carbohydr. Res. 340: 1089-1096.   DOI
22 Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W. 2018. Amylosucrase as a transglucosylation tool: from molecular features to bioengineering applications. Biotechnol. Adv. 36: 1540-1552.   DOI
23 Jung D-H, Jung J-H, Seo D-H, Ha S-J, Kweon D-K, Park C-S. 2013. One-pot bioconversion of sucrose to trehalose using enzymatic sequential reactions in combined cross-linked enzyme aggregates. Bioresour. Technol. 130: 801-804.   DOI
24 Hinz SW, Verhoef R, Schols HA, Vincken J-P, Voragen AG. 2005. Type I arabinogalactan contains ${\beta}$-D-Galp-(1${\rightarrow}$3)-${\beta}$-D-Galp structural elements. Carbohydr. Res. 340: 2135-2143.   DOI
25 Cho H-K, Kim H-H, Seo D-H, Jung J-H, Park J-H, Baek N-I, et al. 2011. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253.   DOI
26 Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, et al. 2009. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619.   DOI
27 Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, et al. 1999. Structure of raw starch-digesting Bacillus cereus ${\beta}$-amylase complexed with maltose. Biochemistry. 38: 7050-7061.   DOI
28 Seo D-H, Jung J-H, Ha S-J, Cho H-K, Jung D-H, Kim T-J, et al. 2012. High-yield enzymatic bioconversion of hydroquinone to ${\alpha}$-arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197.   DOI
29 De Roode M, Peters SW, Franssen MC, Van Padt AD, De Groot A, Boom RM. 2001. Optimization of production and downstream processing of the almond ${\beta}$-glucosidase-mediated glucosylation of glycerol. Biotechnol. Bioeng. 72: 568-572.   DOI
30 Jeong J-W, Seo D-H, Jung J-H, Park J-H, Baek N-I, Kim M-J, et al. 2014. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917.   DOI
31 Cassel S, Debaig C, Benvegnu T, Chaimbault P, Lafosse M, Plusquellec D, et al. 2001. Original synthesis of linear, branched and cyclic oligoglycerol standards. Eur. J. Org. Chem. 2001: 875-896.   DOI